在当今这个科技飞速发展的时代,人工智能技术已然成为推动各行业变革与创新的核心驱动力。而 AI Agent 作为人工智能领域的关键技术,其应用范围不断拓展,从智能客服、智能办公到智能医疗、智能金融等,几乎涵盖了我们生活和工作的方方面面。随着 AI Agent 应用场景的日益丰富和复杂,构建高效、智能的 AI Agent 系统变得愈发重要。这不仅需要先进的算法和模型,更离不开功能强大且适用的 AI Agent 框架的支持。
一、为什么框架选型这么重要?
AI Agent 框架在构建智能系统过程中扮演着基石般的角色,其重要性主要体现在以下几个关键方面:
-
开发效率的加速器:优秀的 AI Agent 框架封装了自然语言处理、对话管理等基础功能模块,开发人员无需从零搭建,可直接使用预制组件,节省开发时间与精力,专注核心业务逻辑,加速产品上市。
-
项目稳定性的保障:专业框架经大量测试验证,能有效处理异常,确保系统稳定运行。在金融投资、医疗诊断等对稳定性要求极高的场景中,避免因系统故障造成重大损失。
-
系统扩展性的支撑:随着业务和需求变化,AI Agent 系统需具备扩展性。合适框架采用灵活架构,当智能客服系统扩展语音交互、多语言服务等功能时,无需大规模重构即可完成。
-
技术集成的桥梁:实际项目中,AI Agent 系统常需集成多种技术工具。功能全面的框架提供统一接口,便于开发人员集成不同大语言模型、数据库、云服务等,发挥技术优势构建强大 AI 应用。
二、10 大热门框架对比
为了帮助大家更清晰地了解不同 AI Agent 框架的特点和适用场景,我们对当前最热门的 10 大框架进行了详细的对比分析,具体内容如下表所示:
框架名称 | 优势亮点 | 适用场景 | 适用建议 |
---|---|---|---|
LangChain | ・提供丰富的预构建组件,如提示模板、文档加载器、向量存储等,大大简化开发流程・支持多种大型语言模型,包括 OpenAI、Google Gemini、Hugging Face 等,具有很强的模型兼容性・具备强大的代理功能,能够动态地选择和使用工具来完成复杂任务・拥有良好的社区生态,提供了大量的教程、示例代码和插件,方便开发者学习和扩展 | ・适用于开发各类智能应用,如智能客服、文档问答系统、智能写作助手等・在需要处理大量文本数据、进行信息检索和知识推理的场景中表现出色・适合构建多步骤、复杂逻辑的 AI 工作流 | ・如果你的项目对语言模型的选择灵活性要求较高,且需要快速搭建一个基于文本处理的智能应用,LangChain 是一个不错的选择・对于初学者来说,其丰富的文档和社区资源有助于快速上手和学习 |
AutoGen | ・专注于多智能体协作,支持不同类型的智能体之间进行高效交互和协同工作・能够自动生成和执行代码,在软件开发、数据分析等领域具有独特优势・提供灵活的人在环(Human-in-the-loop)功能,方便人类用户与智能体进行交互和干预・与微软的 Azure 云服务紧密集成,可充分利用 Azure 的强大计算资源和 AI 服务 | ・特别适用于需要多智能体协作完成复杂任务的场景,如复杂项目的协同开发、大型数据分析项目等・在需要将人类专业知识与人工智能相结合的领域,如医疗诊断辅助、金融风险评估等,也能发挥重要作用 | ・如果你正在开发一个涉及多智能体协作的项目,尤其是与软件开发或数据分析相关,AutoGen 是一个值得考虑的框架・若你的团队已经在使用微软的 Azure 云服务,AutoGen 与 Azure 的集成优势将为项目带来额外的便利 |
CrewAI | ・采用基于角色的代理设计,允许为不同的代理分配特定的角色和任务,使得多智能体系统的构建更加直观和灵活・提供灵活的记忆系统,包括短期记忆、长期记忆和共享记忆,有助于智能体更好地处理上下文信息和历史数据・支持多智能体之间的系列、并行或分层协作模式,能够适应不同复杂度的任务需求・具有内置的防护栏和错误处理机制,提高了系统的稳定性和可靠性 | ・适用于模拟真实团队协作场景的项目,如项目管理、团队协作工具的开发等・在需要进行复杂信息分析和处理的领域,如市场调研、情报分析等,也能发挥很好的作用 | ・当你需要构建一个模拟真实团队协作的多智能体系统时,CrewAI 的基于角色的设计将使开发过程更加清晰和高效・对于对系统稳定性和错误处理要求较高的项目,CrewAI 的内置防护机制是一个重要的优势 |
Semantic Kernel | ・提供了一个轻量级且灵活的架构,便于将 AI 功能集成到现有应用程序中・支持多种编程语言,包括 C#、Python、Java 等,能够满足不同开发团队的技术栈需求・与多个 AI 服务提供商(如 OpenAI、Azure OpenAI、Hugging Face)集成,方便开发者选择合适的模型和服务・具有强大的企业级支持,适用于开发大型企业级 AI 应用 | ・适合企业将 AI 技术融入现有的业务系统,实现业务流程的智能化升级,如智能办公自动化、企业知识管理系统等・在需要跨语言开发和集成多种 AI 服务的项目中具有优势 | ・如果你所在的企业希望将 AI 技术引入现有的业务应用中,并且团队使用多种编程语言进行开发,Semantic Kernel 是一个理想的选择・对于大型企业级项目,其企业级支持和与多种 AI 服务的集成能力能够确保项目的顺利实施和长期维护 |
LangGraph | ・专注于自然语言处理领域,提供了先进的循环控制和状态管理技术,能够处理复杂的对话逻辑和任务流程・支持多智能体之间的通信和协作,通过图模型的方式直观地表示智能体之间的关系和交互过程・对工作流流程和状态进行细粒度控制,有助于开发人员实现高度定制化的 AI 应用 | ・特别适用于构建复杂的对话式 AI 系统,如智能客服、智能助手等,能够处理多轮对话和复杂的用户意图・在需要进行多智能体协同完成自然语言处理任务的场景中表现出色,如多语言翻译系统、文本摘要系统等 | ・如果你正在开发一个对对话逻辑和自然语言处理要求较高的 AI 项目,尤其是涉及多轮对话和多智能体协作,LangGraph 是一个很好的选择・对于需要对工作流进行精细控制和定制化开发的项目,LangGraph 的细粒度控制功能将发挥重要作用 |
LlamaIndex | ・专注于数据编排,能够高效地为大型语言模型集成私有和公共数据,解决了 LLM 在处理特定领域数据时的局限性问题・提供了强大的函数调用能力,方便与外部工具和服务进行集成・支持多模态应用,不仅可以处理文本数据,还能够结合图像、音频等其他数据类型进行分析和处理・具有灵活的插件系统,便于扩展和定制功能 | ・适用于需要处理大量特定领域数据的项目,如企业知识图谱构建、行业专家系统开发等・在多模态数据分析和应用场景中具有优势,如智能多媒体内容生成、智能医疗影像诊断辅助等 | ・当你的项目需要为大型语言模型集成大量的私有或特定领域数据时,LlamaIndex 是一个非常合适的框架・如果你正在开发多模态 AI 应用,LlamaIndex 对多模态数据的支持将为项目带来很大的便利 |
OpenAI Agents SDK | ・专门为 OpenAI 的大型语言模型设计,与 OpenAI 的生态系统紧密结合,能够充分发挥 OpenAI 模型的强大性能・提供了简洁易用的 API,方便开发人员快速构建基于 OpenAI 模型的智能体应用・支持多种工具集成,能够让智能体灵活地调用外部工具来完成任务 | ・适用于希望利用 OpenAI 先进的大型语言模型构建智能体应用的项目,如基于 GPT 系列模型的智能聊天机器人、智能写作工具等・在对模型性能和与 OpenAI 生态系统集成要求较高的场景中具有优势 | ・如果你对 OpenAI 的大型语言模型有较高的依赖,并且希望快速开发一个基于 OpenAI 模型的智能体应用,OpenAI Agents SDK 是首选框架・对于追求模型性能极致发挥和与 OpenAI 生态深度融合的项目,该 SDK 能够满足你的需求 |
ChatDev | ・是一个对话驱动的全流程自动化软件开发框架,能够自动生成对话代码和进行任务分配,大大提高了软件开发的效率・支持多人协作开发,通过可视化的界面和协同工具,方便团队成员之间进行沟通和协作・内置了多种常用的软件开发工具和库,减少了开发人员的配置和集成工作 | ・特别适用于开发对话式 AI 应用的软件开发项目,如智能客服系统的开发、聊天机器人的迭代优化等・对于需要团队协作进行软件开发的场景,ChatDev 的多人协作功能能够显著提升团队的开发效率 | ・如果你正在进行对话式 AI 应用的软件开发项目,并且希望提高开发效率、促进团队协作,ChatDev 是一个极具吸引力的框架・对于小型开发团队或对软件开发效率有较高要求的项目,ChatDev 的自动化和协作功能将带来很大的帮助 |
Phidata | ・基于 Python 开发,具有简洁易用的特点,适合 Python 开发者快速上手・支持多种主流的闭源和开源大型语言模型,如 OpenAI、Anthropic、Cohere、Ollama 和 Together AI 等,具有广泛的模型兼容性・能够轻松连接到各种数据库和向量存储,如 Postgres、PgVector、Pinecone、LanceDb 等,方便数据的存储和检索・提供了会话快照、API 调用、token 使用情况等监控功能,有助于开发人员优化和改进智能体性能 | ・适用于开发基于 Python 的 AI Agent 项目,特别是在需要灵活选择语言模型和处理大量数据存储与检索的场景中表现出色・对于需要实时监控智能体运行状态并进行性能优化的项目,Phidata 的监控功能具有很大的价值 | ・如果你是一名 Python 开发者,并且希望在项目中灵活选择不同的大型语言模型,同时方便地处理数据存储和检索,Phidata 是一个不错的选择・对于对智能体性能监控和优化有较高要求的项目,Phidata 的监控指标和工具将为你提供有力的支持 |
OpenAI Swarm | ・是一个实验性的多智能体编排框架,旨在简化多智能体系统的构建、管理和编排过程・采用轻量级设计,具有较高的执行效率,能够在资源有限的环境中运行・提供了灵活的智能体协调和任务分配机制,支持动态调整智能体的行为和任务 | ・适用于快速开发和实验多智能体系统的场景,如智能机器人协作研究、分布式智能计算等・在对系统资源消耗较为敏感,同时需要快速搭建和验证多智能体系统概念的项目中具有优势 | ・如果你正在进行多智能体系统的研究或快速原型开发,并且对资源消耗和开发速度有较高要求,OpenAI Swarm 是一个值得尝试的框架・对于需要在资源有限的环境中运行多智能体系统的项目,其轻量级设计将是一个重要的优势 |
三、推荐 5 个后起之秀框架
除了上述 10 个热门框架外,AI Agent 领域还有一些后起之秀框架也值得关注,它们在某些特定方面具有独特的优势和潜力,为开发者提供了更多的选择。以下是我们为您推荐的 5 个后起之秀框架:
-
AgentVerse:这是一个专注于多智能体协作的框架,它提供了一个统一的平台,使得不同类型的智能体能够在一个虚拟的环境中进行交互和协作。AgentVerse 的优势在于其强大的环境模拟能力,能够模拟各种复杂的现实场景,让智能体在接近真实的环境中学习和执行任务。此外,它还支持智能体之间的情感建模和社交行为模拟,这在一些需要模拟人类社会交互的场景中具有重要的应用价值,如虚拟社交平台、智能教育游戏等。
-
MindCraft:MindCraft 是一个以知识图谱为核心的 AI Agent 框架。它通过构建和利用知识图谱,使智能体能够更好地理解和处理复杂的知识体系。该框架的独特之处在于其能够自动从大量的文本数据中抽取知识,并构建成知识图谱,从而为智能体提供丰富的背景知识。在智能问答、知识推理、智能推荐等领域,MindCraft 能够发挥出显著的优势,帮助企业更好地挖掘和利用知识资源,提升业务效率和用户体验。
-
FlexAgent:FlexAgent 框架强调灵活性和可扩展性,它允许开发者根据项目的具体需求,轻松地定制和扩展智能体的功能。FlexAgent 提供了一系列可插拔的组件和模块,开发者可以像搭积木一样,选择合适的组件来构建自己的智能体系统。这种高度灵活的设计使得 FlexAgent 适用于各种不同类型和规模的项目,无论是小型的个人项目,还是大型的企业级应用,都能够通过 FlexAgent 快速搭建出满足需求的 AI Agent 系统。
-
SenseAI:SenseAI 是一个专注于多模态感知和融合的 AI Agent 框架。它能够集成多种传感器数据,如图像、音频、视频、文本等,并通过先进的多模态融合算法,让智能体能够更全面、准确地感知和理解周围的环境。SenseAI 在智能安防、智能家居、智能医疗等领域具有广泛的应用前景,例如在智能安防系统中,它可以同时分析监控视频、声音信号以及环境传感器数据,实现更精准的安全预警和事件处理。
-
QuantumAgent:QuantumAgent 是一个将量子计算技术与人工智能相结合的创新框架。它利用量子计算的强大并行计算能力,为 AI Agent 提供了更高效的计算资源,从而在处理大规模数据和复杂问题时具有明显的优势。虽然目前量子计算技术还处于发展阶段,但 QuantumAgent 已经展现出了巨大的潜力,尤其在金融风险预测、复杂科学计算、大数据分析等对计算能力要求极高的领域,有望为用户带来前所未有的解决方案。
四、框架怎么选?四步选型法来了!
面对众多的 AI Agent 框架,如何选择最适合自己项目的框架是许多开发者面临的难题。为了帮助大家解决这个问题,我们总结了一套简单有效的四步选型法,具体步骤如下:
1. 先问清楚目标是什么
场景 | 推荐框架 |
---|---|
快速搭出原型 | Dify / Lindy |
多Agent对话协作 | AutoGen / CrewAI |
企业系统集成 | Semantic Kernel / Haystack |
高并发响应类服务 | FastAgency |
自主控制/扩展性高 | LangChain / LangGraph |
2. 看你团队有没有“开发能力”
- 有开发团队:LangChain、LangGraph、Phidata
- 非技术主导:Dify、Lindy、ChatDev
3. 小步试错,快速验证
搭一个 Demo,花3天验证“是不是合适”,比 PPT 评估强10倍
4. 看社区活跃度 + 私有部署能力
能不能部署在自己服务器里?能不能支持国产大模型?有没有常用工具包?
五、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。