在大模型竞争白热化的当下,DeepSeek R1以其独特的技术路径和卓越性能脱颖而出。作为聚焦推理能力突破的AI模型,它不仅在数学、编程等硬核任务中展现出顶尖水准,更通过架构创新与开源策略,重新定义了高性能AI的可及性。以下将从技术特性、训练方法、应用价值等多维度,深入解析这一模型的核心优势与行业影响。
1、 推理能力:以强化学习为引擎,实现专项突破
DeepSeek R1的核心竞争力在于其基于强化学习(RL)构建的推理体系,这一突破使其在复杂任务处理中远超传统模型,尤其在数学推演、代码生成和逻辑分析等领域表现亮眼。
1.1 强化学习驱动的推理革新
无监督微调的颠覆性尝试
DeepSeek R1-Zero首创“全RL训练模式”,彻底摒弃传统模型依赖的监督微调(SFT)步骤。这意味着它无需大规模人工标注数据,仅通过强化学习即可自主优化推理逻辑,打破了“数据规模决定性能”的行业惯性。这种模式不仅降低了对标注数据的依赖,还让模型的语言表达更贴近人类逻辑,可读性显著提升。
跨领域硬核能力专项强化
在通用能力优化基础上,模型重点强化了三大核心任务表现:
- 数学推理:可处理复杂微积分、线性代数问题,支持符号运算与数值求解的无缝衔接;
- 代码生成:覆盖Python、Java、C++等20+编程语言,能自主完成从需求分析到代码调试的全流程;
- 逻辑推理:在多条件决策、因果关系分析等任务中,可拆解多层逻辑链,减少疏漏。
传统路径: 海量标注数据 → 监督微调(SFT) → 性能瓶颈
创新路径: 强化学习(RL) → 自主迭代 → 跨领域能力跃升
1.2 可解释的“深度推理”过程
DeepSeek R1采用类人类的“分步思考”模式,通过三大机制提升推理可信度:
- 思维链可视化:生成答案前,先输出完整推理路径——从问题理解(如“这是一个需要分类讨论的概率题”)到步骤拆解(“第一步计算样本空间,第二步分析事件概率”),再到逐步求解,让用户清晰追踪逻辑走向;
- 动态自我修正:推理中若发现矛盾(如“上一步公式应用错误”),会自动回溯修正,类似人类“检查验算”的行为,复杂任务错误率降低30%以上;
- 多路径验证:对高难度问题,会尝试多种解法交叉验证,最终选择最优路径,如数学题中同时用代数法与几何法求解,确保结果可靠。
1.3 高效推理的技术支撑
- 超长思维链支持:可生成数万字连续推理文本,在处理如“多步骤科研实验设计”“复杂合同条款分析”等任务时,逻辑连贯性远超同类模型;
- 多模态协同推理:融合文本、公式、图像等信息类型,例如能识别工程图纸中的尺寸参数,结合物理公式推导结构稳定性,拓展了复杂场景应用边界。
2 、训练方法:冷启动奠基,多阶段递进优化
DeepSeek R1的训练体系以“高质量数据起步+分阶段精准迭代”为核心,既解决了强化学习初期的不稳定性,又实现了性能的阶梯式跃升。
2.1 冷启动数据:高质量起点的关键
定义与价值:冷启动数据是模型训练初期引入的“种子数据”,总量仅为传统SFT数据的5%,但均为结构化、高可读性的长思维链内容。其核心作用是为强化学习“定调”——规范输出格式(如分步推理的标号规则)、锚定逻辑基线(如数学证明的严谨性标准),避免模型陷入语言混乱或逻辑偏移。
数据来源与设计:
- 基础层:筛选DeepSeek R1-Zero的优质输出,保留“推理步骤完整、语言简洁”的样本;
- 增强层:人工构建跨领域长思维链(CoT)数据,如“高中物理题解题步骤+思路注解”“代码调试的错误分析过程”等;
- 特点:每个样本均包含“问题+推理链+答案+评估标签”,为模型提供明确的优化方向。
对训练的影响:冷启动数据让模型在强化学习初期即可稳定输出“符合人类阅读习惯”的推理内容,解决了纯RL训练常见的“语言碎片化”问题,后续迭代效率提升40%。
2.2 三阶段训练的精准迭代
第一阶段:推理导向强化学习
基于冷启动数据微调后的基础模型,引入“语言一致性奖励机制”——对逻辑连贯、术语准确的推理链给予高分,重点优化数学公式表达、代码语法规范等结构化输出能力。此阶段持续2周,模型在数学推理基准测试中得分提升25%。
第二阶段:合成数据与监督微调融合
通过“拒绝采样”从第一阶段模型输出中筛选优质样本(如“通过率前10%的代码片段”),与写作、事实问答等领域的监督数据混合,形成百万级“增强训练集”。随后对模型进行两轮微调:第一轮优化通用表达流畅度,第二轮强化领域知识准确性。
第三阶段:全场景偏好对齐
结合双重奖励信号:
- 规则奖励:针对推理任务(如“数学公式正确性”“代码可运行性”),用硬规则直接打分;
- 神经奖励模型:针对通用任务(如“对话自然度”“摘要完整性”),通过人类反馈训练的奖励模型评估。
最终实现模型在专业任务与日常场景中的平衡表现。
3 、降本提能:架构创新与蒸馏技术的双重突破
DeepSeek R1通过“架构革新+模型蒸馏”的组合策略,在提升性能的同时,将计算成本与内存占用压缩至行业平均水平的1/5,为大模型的轻量化落地提供了可行路径。
3.1 架构创新:效率与性能的平衡术
MoE架构的负载均衡优化
采用“16专家+2选1路由”的混合专家(MoE)结构,通过两项技术解决专家模块负载不均问题:
- 自然负载均衡:路由机制会动态调整专家调用频率,避免个别专家“过载”;
- 共享专家池:允许专家模块跨任务共享参数,如“数学推理专家”可辅助“物理公式推导”任务,资源利用率提升60%。
多令牌预测(MTP)加速推理
传统模型一次预测1个令牌(如1个汉字或单词),MTP技术则实现“序列化多令牌预测”——一次生成3-5个连续令牌(如“二次函数的图像是抛物线”),不仅推理速度提升2-3倍,还减少了“上下文漂移”(如主题突然切换)问题,长文本生成连贯性提升40%。
多头潜在注意力(MLA)机制
通过低秩矩阵分解压缩注意力权重,在保持与传统多头注意力(MHA)同等性能的前提下:
- 训练时内存占用减少50%,支持更大批量数据训练;
- 推理时KV缓存体积压缩60%,在端侧设备上的加载速度提升3倍。
FP8混合精度训练
采用FP8精度进行核心计算(部分关键层保留FP16),在保证训练精度的同时:
- 计算量减少50%,单轮训练时间从72小时压缩至36小时;
- 存储需求降低60%,671B参数模型的权重文件从2.7TB缩减至1.1TB。
3.2 模型蒸馏:小模型的“性能跃迁”
DeepSeek通过“多教师蒸馏”技术,将671B参数大模型的知识迁移至小模型(1.5B-70B参数),实现“轻量高效”:
多教师模型生成标注数据 → 学生模型多轮训练 → 领域场景微调 → 性能验证与优化
- 效率跃升:以7B参数的DeepSeek-R1-Distill-Qwen为例,计算复杂度仅为原模型的1/90,在普通GPU上推理速度提升8倍,可支持手机、边缘设备的本地部署;
- 性能保障:在代码基准测试中,7B蒸馏模型Pass@1指标达68.5%,超越同规模模型20个百分点;数学推理得分与13B参数模型持平,实现“小而强”。
4、 策略优化:开源生态与成本优势的双重壁垒
DeepSeek以“开源+低成本”为核心策略,不仅降低了AI技术的使用门槛,还通过性价比优势重塑了行业竞争格局。
4.1 开源策略:MIT许可下的生态共建
DeepSeek R1采用MIT许可协议开源,这意味着:
- 开发者可免费商用,无需公开衍生作品代码;
- 模型权重、训练代码、技术报告完全公开,支持二次训练与定制化优化;
- 社区可贡献数据、插件与应用案例,目前已有200+开发者团队基于其构建垂直领域工具(如教育领域的“智能解题助手”)。
4.2 开源模式的机遇与挑战
核心优势:
- 可访问性:中小企业无需百万级预算,即可部署高性能推理模型;
- 可定制性:如金融机构可基于模型微调“风控专属推理模块”,适配行业术语与规则;
- 社区协同:全球开发者共同排查漏洞、优化功能,模型迭代速度较闭源模型快30%。
待解挑战:
- 安全边界:需社区共建“恶意使用过滤机制”,防止模型被用于生成有害内容;
- 性能维护:小团队微调可能导致性能波动,需官方提供标准化微调工具链;
- 文档完善:需补充更详细的部署指南,降低非技术人员的使用门槛。
4.3 成本优势:从训练到调用的全链条优化
DeepSeek通过技术创新实现“低成本高性能”,具体表现为:
- 训练成本:DeepSeek V3训练成本仅557.6万美元,不足GPT-4o的1/180,让中小团队具备“训练大模型”的可能;
- 调用成本:API服务定价远低于同类产品,例如输出 tokens 费用仅为OpenAI o1的3%,企业级用户年度成本可节省数百万美元。
模型 | 训练成本 | 输入调用成本 (百万 tokens) | 输出调用成本 (百万 tokens) |
---|---|---|---|
DeepSeek-V3 | 557.6万美元 | 0.014美元 (缓存命中) / 0.14美元 (未命中) | 0.28美元 |
DeepSeek-R1 | 推测低于500万美元 | 0.14美元 (缓存命中) / 0.55美元 (未命中) | 2.19美元 |
OpenAI GPT-4o | 10亿美元 | 1.25美元 (缓存命中) / 2.5美元 (未命中) | 10美元 |
OpenAI o1 | 推测超15亿美元 | 7.5美元 (缓存命中) / 15美元 (未命中) | 60美元 |
5、 测试评估:对标全球顶尖,多项能力领跑
DeepSeek R1在权威基准测试中表现优异,尤其在推理与知识类任务中,已跻身全球顶尖模型行列。
5.1 推理任务:硬核能力达专家级
- 数学推理:在AIME 2024测试中以79.8%的pass@1得分超越OpenAI o1;MATH-500测试中正确率97.3%,与o1持平,远超GPT-4o(82.1%);
- 代码生成:编程竞赛Elo评分达2029,超越96.3%的人类参赛者,可自主完成“分布式系统设计”“算法优化”等高级任务;
- 逻辑推理:在多步因果分析任务中,准确率达89.7%,显著高于行业平均水平(72.3%)。
5.2 知识类任务:覆盖广度与深度兼具
- 教育领域:MMLU(多任务语言理解)测试得分86.5%,MMLU-Pro得分81.2%,超越GPT-4o(79.3%),尤其在“医学”“哲学”等专业领域表现突出;
- 事实问答:在需要跨领域知识整合的任务(如“结合经济学与环境科学分析碳交易政策”)中,信息整合准确率达85%,较同类模型高15个百分点。
5.3 综合任务:场景适应性强
在创意写作、文档摘要、多轮对话等任务中,模型表现均衡:
- AlpacaEval 2.0(对话质量评估)胜率87.6%,ArenaHard(复杂场景对话)胜率92.3%,说明其在非考试类任务中仍具强竞争力;
- 支持多语言混合输入(如中英夹杂的技术文档),理解准确率达92%,优于多数仅优化单语言的模型。
6、 本地部署:端侧与云端的协同优化
DeepSeek R1通过轻量化设计与协同策略,实现了从边缘设备到云端集群的灵活部署,满足不同场景的性能与隐私需求。
6.1 端侧部署:小而精的本地化能力
- 模型轻量化:1.5B-70B参数的蒸馏模型适配不同设备,如7B模型可在8GB内存的PC上流畅运行,1.5B模型支持手机端离线部署;
- 实时响应:端侧推理延迟低至50ms,满足智能家居(如“实时语音指令解析”)、自动驾驶(如“路况逻辑判断”)等低延迟场景需求;
- 硬件兼容:支持x86、ARM架构,适配英特尔CPU、英伟达GPU及国产芯片(如华为昇腾),通过Ollama等工具可一键完成PC部署;
- 隐私保护:离线模式下数据不上传云端,适合医疗、金融等对数据敏感的领域。
6.2 端云协同:效率与能力的平衡
通过“端侧预处理+云端深度推理”的协同模式,优化资源分配:
- 端侧负责简单任务(如“文本分类”“公式识别”),云端处理复杂任务(如“多文档逻辑整合”),减少数据传输量;
- 模型更新采用“增量同步”机制,端侧仅下载差异参数,节省流量与时间;
- 负载均衡策略可动态调整端云任务分配,如高峰时段将部分任务分流至云端,避免端侧过载。
6.3 对比优势:性价比领先
与同类产品相比,DeepSeek R1在部署成本与性能上展现显著优势:
- 训练成本仅为GPT-4o的1/180,本地部署硬件门槛降低60%;
- 开源特性支持定制化优化,如工业场景可集成设备接口,实现“实时数据推理+控制指令生成”闭环。
7 、技术标准革新:从“规模竞赛”到“效率革命”
DeepSeek R1的技术路径推动AI行业从“拼参数规模”转向“重效率与普惠”,重塑了三大技术标准。
7.1 低成本训练的技术范式
通过MLA、FP8混合精度等技术,将大模型训练成本压缩至行业1/10,证明“高性能≠高成本”。例如,其开源的FP8权重文件可直接用于训练,中小团队无需昂贵的存储与计算资源,即可参与大模型研发,推动AI技术民主化。
7.2 定价逻辑的重构
以“557.6万美元训练成本+低API定价”打破行业垄断,迫使头部企业下调服务价格(如字节豆包降价85%)。这种“低成本高性能”模式让AI技术从“大企业专属”变为“中小企业可及”,加速行业应用落地。
7.3 开源协作的生态升级
全栈开源(模型、代码、数据)吸引全球开发者参与,形成“问题共解、功能共建”的生态。目前社区已贡献100+插件,覆盖教育、法律等领域,迭代速度较闭源模型快30%,推动技术从“封闭研发”走向“开放协作”。
8 、产业格局重塑:竞争与创新的加速
DeepSeek R1的崛起打破了AI行业的垄断格局,引发全球技术竞合与产业链升级。
8.1 中美技术博弈新变量
作为中国自主研发的顶尖模型,DeepSeek R1打破了美国在高端AI领域的技术壁垒:
- 技术冲击:其开源特性与低成本优势,导致英伟达、微软等美国科技巨头股价短期波动(英伟达跌幅17%);
- 市场突破:相关应用在苹果商店下载量超越ChatGPT,成为首个登顶的中国AI应用,证明本土模型的国际竞争力。
8.2 全球竞争白热化
头部企业加速技术迭代应对挑战:
- OpenAI推出o3-mini模型,免费开放基础推理功能,聚焦数学、工程领域;
- 谷歌发布Gemini 2.0系列,强调性价比与多模态能力,试图在效率上追赶;
- 国内企业如百度、阿里也加快大模型开源与成本优化,行业创新节奏显著加快。
8.3 产业链协同升级
低成本模型推动上下游发展:
- 国产芯片:适配需求带动昇腾、寒武纪等国产芯片的场景落地;
- 云服务:低门槛部署促进AI云服务普及,如阿里云、腾讯云推出基于DeepSeek的轻量化解决方案;
- 应用生态:教育、医疗等领域涌现大量垂直工具,如“智能诊疗助手”“法律文书自动生成系统”,推动千行百业AI化。
9 、技术深化方向:突破局限,持续进化
尽管表现优异,DeepSeek R1仍有优化空间,未来将聚焦四大方向。
9.1 通用能力补全
目前在函数调用、多轮对话等任务中稍逊于V3版本,计划通过“长推理链增强”技术提升:例如,将多轮对话拆解为“上下文记忆→意图预测→回应生成”的推理链,增强连贯性。
9.2 提示工程优化
模型对提示敏感,少样本提示会降低性能。未来将引入“提示自适应”机制,自动识别提示类型并调整推理策略,无论零样本还是少样本输入,均能保持稳定性能。
9.3 多语言支持拓展
当前主要优化中英文,计划通过“跨语言推理迁移”技术支持多语种,解决小语种处理中的“语言混杂”问题,如同时处理英文文献与日文注释时的逻辑连贯性。
9.4 软件工程能力强化
在软件工程基准测试中表现待提升,将通过两大措施优化:
- 在拒绝采样阶段增加“软件工程专属数据”(如代码重构案例);
- 强化学习中引入“异步评估”机制,实时反馈代码运行效果,加速迭代。
10、 场景拓展:从通用到垂直的深度渗透
DeepSeek R1将通过技术创新与垂直深耕,拓展应用边界,覆盖更多行业场景。
10.1 技术创新方向
- 多模态深度融合:整合NLP与计算机视觉,实现“图像理解→逻辑推理→文本输出”闭环,如从医学影像中识别病灶,结合临床数据推导诊断建议;
- 具身智能探索:与机器人硬件结合,将推理能力转化为物理世界行动,如工业机器人通过推理调整装配步骤,适应零件公差;
- 自进化系统:构建“数据自动生成→模型自主微调”的迭代机制,例如教育场景可根据学生错题自动生成训练数据,优化解题辅导能力。
10.2 垂直领域深耕
- 医疗:辅助医生完成病历分析(如“症状逻辑链推导”)、治疗方案生成(如“结合患者病史推荐用药”),已在3家三甲医院试点;
- 金融:构建“市场数据推理→风险预警→投资建议”系统,支持量化交易策略生成,某券商试点中预测准确率提升20%;
- 教育:开发“个性化解题助手”,针对学生错误步骤生成推理分析(如“这一步误用了勾股定理条件”),已接入10+在线教育平台;
- 法律:自动解析合同条款逻辑(如“违约条件与赔偿计算的关联”),生成风险提示,某律所使用后审查效率提升40%;
- 工业:通过设备传感器数据推理故障原因(如“温度波动与轴承磨损的关联”),预测维护周期,某工厂停机时间减少30%。
11 、DeepResearch:智能研究的自动化引擎
DeepResearch作为基于R1的进阶工具,聚焦“多步骤自主研究”,具备三大核心功能:
- 多步骤自主研究:从“问题定义”到“结论生成”全流程自动化,如学术研究中可自主完成“文献检索→数据提取→逻辑整合→论文框架生成”;
- 端到端强化学习:根据研究结果动态优化策略,例如市场调研中若发现数据偏差,会自动调整样本筛选规则;
- 深度信息整合:融合多源异构数据(文本、表格、图像),如法律研究中同时分析法规条文、案例判决书与相关新闻,生成综合解读。
12、 基准测试:人类终极考试的突破
在涵盖100+学科的“人类终极考试”中,DeepSeek R1准确率达26.6%,超越同类模型。该测试包含3000+题,覆盖语言学、火箭科学、古典文学、生态学等领域,要求模型具备跨学科知识整合与深度推理能力,其表现印证了“通用智能”的进步。
13 、技术协同:多模块联动的复杂任务处理
DeepResearch通过“模块协同”机制,在复杂任务中表现远超传统模型,其与GPT-4o的核心差异如下:
类别 | DeepResearch | GPT-4o |
---|---|---|
核心目标 | 自动化复杂研究全流程(收集→分析→输出) | 单一语言生成任务(如文本创作、简答) |
执行逻辑 | 多模块分工协作(探索者找数据、整合者理逻辑等) | 单模型一次性输出,无分步优化 |
复杂任务能力 | 支持学术论文撰写、法律案例分析等多轮任务 | 擅长单次创意生成或简单推理 |
多模态支持 | 直接处理PDF、图像、表格,输出可视化报告 | 以文本为主,多模态处理需额外工具 |
可靠性保障 | 每步结果交叉验证,可追溯信息来源 | 无验证机制,偶尔出现“幻觉”内容 |
这种协同模式让DeepResearch成为“AI研究员”,而非单纯的“文本生成器”,在需要高可靠性的专业场景中不可替代。
通过技术创新与生态建设,DeepSeek R1不仅重新定义了推理模型的性能标准,更以低成本、开源化推动AI技术从“实验室”走向“千行百业”,为行业发展注入新动能。未来,随着技术的持续深化,其在垂直领域的应用将进一步拓展,加速AI普惠的实现。
14、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
15、为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
16、大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
适用人群
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。