Day22_【机器学习—集成学习(3)—Boosting—Adaboost算法】

        Adaptive Boosting(自适应提升)是基于 Boosting思想实现的一种集成学习算法,核心思想是通过逐步提高那些被前一步分类错误的样本的权重来训练一个强分类器

一、Adaboost算法

        

直线相当于一个弱学习器,

正确的数据权重减小,错误的数据权重增加

二、Adaboost构建过程

1 初始化数据权重,来训练第1个弱学习器。找最小的错误率计算模型权重,再更新模数据权重

2 根据更新的数据集权重,来训练第2个弱学习器,再找最小的错误率计算模型权重,再更新数据权重

3 依次重复第2步,训练n个弱学习器。组合起来进行预测。结果大于0为正类、结果小于0为负类

内部算法过程

三、API

sklearn.ensemble.AdaBoostClassifier

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值