Learning Deconvolution Network for Semantic Segmentation

本文介绍了一种用于图像分割的新方法——学习反卷积网络。该方法通过构建卷积-反卷积网络,利用特殊unpooling层实现图像大小还原,提高了图像分割精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文题目:Learning Deconvolution Network for Semantic Segmentation( ICCV, 2015

开源地址:http://cvlab.postech.ac.kr/research/deconvnet/

本篇文章主要是做图像分割,和Fully Convolutional Networks for Semantic Segmentation有些类似。

不同之点在于,本文构造了一个Convolution-deconvolution网络,convolution层主要用于特征提取和泛化,而deconvolution层,添加了特殊的unpooling层,相当于pooling的逆操作,还原图像大小。

整体网络结构如下:

结果如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值