SVD(奇异值分解)小结

原文见https://www.cnblogs.com/endlesscoding/p/10033527.html

还有一个很好的图像上的例子,总结起来理解,也就是找出图像中像素特征值重要性程度,进行图片的压缩。也可以理解成提取关键特征。原文内容不错,保留一下代码

%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

# 读取数据
img_eg =mpimg.imread("../data/test.jpg")
print(img_eg.shape)
# 大小(552, 440, 4)

# 利用numpy进行矩阵分解
img_temp = img_eg.reshape(552, 440 * 4)
U,Sigma,VT = np.linalg.svd(img_temp)
print(U.shape,Sigma.shape,VT.shape)
# 分解后的大小(552, 552) (552,) (1760, 1760)

# 分别提取不同维度的特征进行还原
sval_nums = 60
img_restruct1 = (U[:, 0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[:sval_nums, :])
img_restruct1 = img_restruct1.reshape(552,440,4)


sval_nums = 120
img_restruct2 = (U[:,0:sval_nums]).dot(np.diag(Sigma[0:sval_nums])).dot(VT[0:sval_nums,:])
img_restruct2 = img_restruct2.reshape(552,440,4)

#用matplot进行可视化
fig, ax = plt.subplots(nrows=1, ncols=3, figsize = (24,32))
ax[0].imshow(img_eg)
ax[0].set(title = "src")

ax[1].imshow(img_restruct1.astype(np.uint8))
ax[1].set(title = "nums of sigma = 60")

ax[2].imshow(img_restruct2.astype(np.uint8))
ax[2].set(title = "nums of sigma = 120")
plt.show()

展示结果如图所示。。。

另外见压缩损失的均方误差

见:https://blog.csdn.net/weixin_30807677/article/details/98730332

的第二部分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值