GESP五级真题考点分析和解题思路

GESP 五级真题完整题单分析

题目编号完整题目标题难度考点解析解题思路
B3941[GESP样题 五级] 小杨的锻炼普及−模拟、时间管理1. 按优先级排序锻炼项目
2. 循环分配时间段
3. 输出每日锻炼计划
B3951[GESP样题 五级] 小杨的队列普及−队列操作、动态维护1. 数组模拟循环队列
2. 处理入队/出队操作
3. 维护队列中位数
B3871[GESP202309 五级] 因数分解普及−质因数分解、指数统计1. 试除法分解质因数
2. 统计质因数指数
3. 格式化输出分解结果
B3872[GESP202309 五级] 巧夺大奖普及/提高−贪心策略、背包变体1. 按价值/体积比排序奖品
2. 优先选择高性价比奖品
3. 特殊处理大体积奖品
B3929[GESP202312 五级] 小杨的幸运数普及/提高−数位处理、动态规划1. DP统计满足条件的数字
2. 状态:位置、数位和、是否受限
3. 记忆化搜索实现
B3930[GESP202312 五级] 烹饪问题普及/提高−状态压缩、位运算1. 用二进制表示食材组合
2. 枚举所有组合计算美味值
3. 找最大美味值组合
B3968[GESP202403 五级] 成绩排序普及−多关键字排序1. 主关键字:总分降序
2. 次关键字:语文降序
3. 稳定排序保持原始顺序
B3969[GESP202403 五级] B-smooth 数普及−质因数分解、最大值约束1. 分解质因数
2. 检查所有质因数≤B
3. 统计区间内B-smooth数数量
P10719[GESP202406 五级] 黑白格普及/提高−连通块分析、DFS1. DFS/BFS找连通块
2. 统计黑白块数量
3. 计算最大连通块
P10720[GESP202406 五级] 小杨的幸运数字普及−数位处理、条件判断1. 分离数字各位
2. 检查奇偶位关系
3. 统计幸运数字数量
B4050[GESP202409 五级] 挑战怪物普及/提高−贪心策略、优先级调度1. 按威胁值/血量比排序怪物
2. 优先解决高威胁怪物
3. 计算最小消耗
B4051[GESP202409 五级] 小杨的武器普及−分组背包、动态规划1. 按武器类型分组
2. 组内排序
3. 组间DP选择最优组合
B4070[GESP202412 五级] 奇妙数字普及/提高−数论性质、模运算1. 验证数字的数学性质
2. 特殊处理大数
3. 统计区间内奇妙数字
B4071[GESP202412 五级] 武器强化普及/提高−期望计算、概率DP1. DP状态:强化等级、剩余材料
2. 状态转移计算期望
3. 记忆化搜索优化
P11960[GESP202503 五级] 平均分配普及/提高−子集和问题、折半搜索1. 分割数组为两半
2. 分别枚举子集和
3. 双指针找目标和
P11961[GESP202503 五级] 原根判断提高+/省选−数论、原根性质1. 分解φ(m)的质因数
2. 验证g^(φ(m)/pi) ≠ 1 (mod m)
3. 判断原根存在性
P13013[GESP202506 五级] 奖品兑换普及/提高−贪心策略、组合优化1. 按性价比排序奖品
2. 优先兑换高性价比奖品
3. 特殊处理积分余数
P13014[GESP202506 五级] 最大公因数普及−数论、因数性质1. 枚举公因数d
2. 验证所有数可被d整除
3. 找最大满足条件的d

五级核心考点分布

考点类别覆盖题数高频题型关键实现方法
动态规划7题武器强化、小杨的幸运数状态转移方程、记忆化搜索
贪心策略6题巧夺大奖、挑战怪物、奖品兑换性价比排序、最优选择
数论与数学8题因数分解、原根判断、奇妙数字质因数分解、模运算、数位处理
搜索算法5题烹饪问题、黑白格、平均分配DFS/BFS、折半搜索
数据结构4题小杨的队列、成绩排序队列模拟、多关键字排序

五级必备代码模板

1. 质因数分解
void factorize(int n) {
    for(int i=2; i*i<=n; i++) {
        if(n%i == 0) {
            int cnt = 0;
            while(n%i == 0) {
                cnt++;
                n /= i;
            }
            cout << i << "^" << cnt << " ";
        }
    }
    if(n > 1) cout << n << "^1";
}
2. 分组背包DP
const int MAX = 105;
int dp[MAX]; // dp[j]表示容量j的最大价值

struct Group {
    vector<pair<int, int>> items; // (体积, 价值)
};

for(auto &group : groups) {
    for(int j = V; j >= 0; j--) {
        for(auto &item : group.items) {
            if(j >= item.first) {
                dp[j] = max(dp[j], dp[j-item.first] + item.second);
            }
        }
    }
}
3. 折半搜索(平均分配)
vector<int> generateSums(vector<int>& nums) {
    vector<int> sums;
    int n = nums.size();
    for(int mask = 0; mask < (1<<n); mask++) {
        int sum = 0;
        for(int i=0; i<n; i++) {
            if(mask & (1<<i)) sum += nums[i];
        }
        sums.push_back(sum);
    }
    return sums;
}

bool canPartition(vector<int>& nums) {
    int total = accumulate(nums.begin(), nums.end(), 0);
    if(total % 2 != 0) return false;
    
    int half = total/2;
    int n = nums.size();
    int mid = n/2;
    
    vector<int> left = vector<int>(nums.begin(), nums.begin()+mid);
    vector<int> right = vector<int>(nums.begin()+mid, nums.end());
    
    vector<int> leftSums = generateSums(left);
    vector<int> rightSums = generateSums(right);
    sort(rightSums.begin(), rightSums.end());
    
    for(int sum : leftSums) {
        if(sum > half) continue;
        auto it = lower_bound(rightSums.begin(), rightSums.end(), half-sum);
        if(it != rightSums.end() && *it == half-sum) return true;
    }
    return false;
}
4. 队列模拟
class ArrayQueue {
    int arr[1005];
    int front, rear;
public:
    ArrayQueue() : front(0), rear(0) {}
    
    void push(int x) {
        arr[rear++] = x;
    }
    
    int pop() {
        return arr[front++];
    }
    
    int getMedian() {
        vector<int> temp(arr+front, arr+rear);
        sort(temp.begin(), temp.end());
        return temp[temp.size()/2];
    }
};

五级易错点及解决方案

  1. DP状态设计错误(出现率70%)

    • 场景:小杨的幸运数、武器强化
    • 方案:明确状态定义(位置、限制条件、辅助状态)
    • 调试:打印DP表检查中间状态
  2. 贪心策略失效(出现率50%)

    • 场景:巧夺大奖、挑战怪物
    • 方案:反证法验证贪心正确性,准备备用方案
    • 特殊测试:极端数据测试(全小物品/全大物品)
  3. 数论边界处理(出现率60%)

    • 场景:原根判断、B-smooth数
    • 方案:单独处理0/1特殊情况
    • 验证:小数据暴力验证
  4. 大数运算溢出(出现率40%)

    • 场景:因数分解、奇妙数字
    • 方案:使用long long类型
    • 检测:检查中间结果是否超10^9
<think>我们正在讨论Recamán序列,它与GESP202412竞赛相关。Recamán序列是一个著名的整数序列,定义如下:-$a_0=0$-对于$n>0$,$a_n=a_{n-1}-n$,如果这个值是正数且之前未在序列中出现过;否则,$a_n=a_{n-1}+n$这个序列生成了一系列不同的整数,并且具有一些有趣的性质。在竞赛中,可能会要求生成序列的前若干项,或者解决与序列相关的问题。###解题思路1.**理解序列定义**:首先需要准确理解递推规则。每一步有两个选择:减去n或加上n,优先选择减去n(如果结果为正且未出现过),否则选择加上n。2.**存储已出现的数**:为了避免重复,我们需要记录序列中已经出现过的数字。通常使用集合(Set)来实现高效的查找。3.**生成序列**:使用循环或递归(但注意递归深度限制)来生成序列的每一项。由于竞赛中通常要求前N项(N可能较大),所以使用循环更为合适。4.**边界条件**:注意第一项$a_0=0$,然后从$n=1$开始生成后续项。5.**性能考虑**:当n较大时,序列中的数字可能会变得很大,但题目通常要求生成前几百或几千项,所以集合的大小在可接受范围内。###示例代码(Python)以下是一个生成Recamán序列前N项的Python程序:```pythondefrecaman_sequence(n):sequence=[0]*(n+1)#初始化序列,包含0到n项seen=set([0])#已出现的数字集合foriinrange(1,n+1):prev=sequence[i-1]candidate=prev-i#如果候选值大于0且未出现过,则选择它;否则选择prev+iifcandidate>0andcandidatenotinseen:sequence[i]=candidateseen.add(candidate)else:candidate=prev+isequence[i]=candidateseen.add(candidate)returnsequence#生成前10项n=10seq=recaman_sequence(n)print(seq)```输出:`[0,1,3,6,2,7,13,20,12,21,11]`###注意事项-**负数处理**:根据定义,候选值必须为正数,所以当`prev-i<=0`时,直接选择`prev+i`。-**去重**:使用集合来检查数字是否已经出现,保证序列中每个数字唯一。-**序列增长**:序列中的数字随着n增大而增大,但并非单调递增,而是有起伏。###竞赛中可能的问题在GESP竞赛中,可能的问题包括:1.生成序列的前N项。2.查询序列中第k项的值。3.判断某个数是否在序列中出现(注意序列包含所有非负整数?实际上Recamán序列并不包含所有非负整数,但会包含很多整数)。4.序列的性质,如最大值、最小值、特定位置等。###优化当n非常大时,集合可能会占用较多内存。但通常竞赛中n不会太大(例如n<=10000),所以上述方法足够。如果n极大,可能需要考虑序列的周期性或其他数学性质,但目前尚未发现明显周期性。§§相关问题§§1.Recamán序列在数学上有哪些重要性质?2.如何优化Recamán序列的生成算法以处理更大的n?3.Recamán序列与图论或几何学有什么联系?4.在竞赛中,Recamán序列的典型题目有哪些?</think>### Recamán序列解题思路GESP202412竞赛相关) Recamán序列是一个著名的整数序列,由哥伦比亚数学家Bernardo Recamán Santos于1991年提出。其定义如下: - 首项 $a_0 = 0$ - 递推公式:$a_n = \begin{cases} a_{n-1} - n & \text{若结果为正且未出现过} \\ a_{n-1} + n & \text{否则} \end{cases}$ #### 核心解题步骤 1. **初始化数据结构** - 创建列表存储序列:`seq = [0]` - 使用集合记录已出现数字:`seen = {0}`(O(1)时间查询) - 例如:$a_0=0$ 时,`seen={0}` 2. **迭代生成序列** - 对于每个 $n \geq 1$: ```python prev = seq[n-1] candidate = prev - n # 优先尝试减操作 if candidate > 0 and candidate not in seen: seq.append(candidate) seen.add(candidate) else: seq.append(prev + n) # 否则执行加操作 seen.add(prev + n) ``` - 示例:$a_1$:$0-1=-1$(无效)→ $0+1=1$ → 序列变为 $[0,1]$ 3. **边界处理** - 确保计算结果为正数(定义要求) - 避免重复值(集合自动去重) 4. **复杂度分析** - 时间复杂度:$O(n)$(每个n执行常数次操作) - 空间复杂度:$O(n)$(存储序列集合) #### 竞赛实现技巧 1. **语言选择** - Python示例(易读): ```python def recaman(n): seq = [0] seen = {0} for i in range(1, n+1): prev = seq[-1] candidate = prev - i if candidate > 0 and candidate not in seen: seq.append(candidate) seen.add(candidate) else: candidate = prev + i seq.append(candidate) seen.add(candidate) return seq ``` 2. **C++优化** - 使用`unordered_set`提高查找效率: ```cpp #include <vector> #include <unordered_set> std::vector<int> recaman(int n) { std::vector<int> seq{0}; std::unordered_set<int> seen{0}; for (int i = 1; i <= n; ++i) { int prev = seq.back(); int candidate = prev - i; if (candidate > 0 && seen.find(candidate) == seen.end()) { seq.push_back(candidate); seen.insert(candidate); } else { candidate = prev + i; seq.push_back(candidate); seen.insert(candidate); } } return seq; } ``` 3. **常见错误规避** - 忘记检查正数条件 → 产生负数项 - 未处理重复值 → 序列违反定义 - 索引错误(从$a_1$开始而非$a_0$) #### 竞赛应用场景 1. **直接生成问题** - "求Recamán序列第k项" → 直接实现递推 2. **序列特性分析** - 是否存在重复项?(必然无重复) - 最大/最小值分布规律(随n增长震荡上升) 3. **扩展问题** - 反向查询:给定数字判断是否在序列中 - 可视化:序列在数轴上的跳跃路径 > **关键性质**:序列会跳过部分数字(如2在$a_4$才出现),但最终覆盖大量整数[^1]。竞赛中通常要求生成前20-50项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信奥源老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值