【大模型LLM】数据集构造的一点思考

【多模态大模型MLLM】指令微调的一点思考

对于Alpaca 格式和ShareGPT 格式的区别在于,Alpaca 格式将问-答对中的问题拆成了任务描述(instruction)和输入(input)两部分,个人认为这样做的优势在于,模型学习的时候attention模块可以着重学习任务的统一范式,而将输入的细节放置在次要位置。这样对于某一些相同类型的任务,能够更快的收敛到较好的程度。

Alpaca 格式

Alpaca 是基于 Meta 开源的 LLaMA 模型构建的一种微调数据集格式,特别用于 instruction-tuning,即指令微调。其数据格式的特点是提供了一个明确的任务描述(instruction)、输入(input)和输出(output)三部分。

{
    "instruction": "Summarize the following text.",
    "input": "Artificial intelligence (AI) is a rapidly growing field...",
    "output": "AI is an evolving technology that is growing quickly in various fields..."
}

字段说明:
instruction: 任务的指令,告诉模型需要完成什么操作。
input: 任务所需的输入。如果任务是开放式的或者不需要明确的输入,这一字段可以为空字符串。
output: 任务的期望输出,也就是模型在给定指令和输入情况下需要生成的内容。

ShareGPT 格式

ShareGPT 格式来源于通过记录 ChatGPT 与用户对话的数据集,主要用于对话系统的训练。它更侧重于多轮对话数据的收集和组织,模拟用户与 AI 之间的交互。

{
    "conversations": [
        {
            "role": "user",
            "content": "What is the capital of France?"
        },
        {
            "role": "assistant",
            "content": "The capital of France is Paris."
        },
        {
            "role": "user",
            "content": "Can you tell me more about Paris?"
        },
        {
            "role": "assistant",
            "content": "Paris is the largest city and the capital of France. It is known for its art, culture, and history..."
        }
    ]
}

字段说明:
conversations: 这是一个对话列表,包含每轮对话的角色和内容。

role: 表示对话的角色,通常为“user”表示用户,“assistant”表示AI助手。
content: 具体的对话内容。

参考博客:大模型微调——训练数据集的格式Alpaca 和 ShareGPT

在使用大型语言模型(LLM)生成训练数据并对其进行微调的过程中,可以遵循以下几个关键步骤和最佳实践。这些方法广泛应用于自然语言处理、代码生成以及其他需要模型适应特定任务的场景中。 ### 数据生成 为了生成高质量的训练数据集,通常会采用以下策略: 1. **Prompt Engineering**:设计合理的提示模板,引导模型生成符合预期格式和内容的数据。例如,在生成问答对时,可以使用类似“问题:{问题} 答案:”这样的模板来触发模型输出答案部分。 2. **上下文学习(In-Context Learning)**:通过在提示中提供少量示例,使模型能够基于这些示例生成新的样本。这种方法尤其适用于没有现成训练数据的情况 [^5]。 3. **多样性控制**:为了确保生成的数据具有足够的多样性和覆盖范围,可以通过调整温度参数(temperature)、top-k采样或核采样(nucleus sampling)等技术来控制生成过程中的随机性。 4. **后处理与过滤**:生成的数据往往需要经过清洗和验证,以去除低质量或不相关的样本。这一步骤可能包括语法检查、逻辑一致性验证以及是否符合目标领域的规则等。 ### 微调流程 一旦有了可用于微调的训练数据集,接下来就可以按照标准的微调流程来进行操作: 1. **选择基础模型**:根据任务需求选择合适的基础模型。HuggingFace 提供了多种预训练模型,如 BERT、RoBERTa 和 T5 等,并且支持自定义架构 [^2]。 2. **准备数据集**:将生成的数据转换为适合模型输入的形式。对于文本分类任务来说,这意味着要将文本映射到对应的标签;而对于序列到序列的任务,则需要准备好源句子和目标句子对 [^3]。 3. **配置训练参数**:设置学习率、批次大小、训练轮数等超参数。同时还需要决定是否采用参数高效微调技术,比如 LoRA(Low-Rank Adaptation),它可以在保持大部分原始权重不变的情况下仅更新一小部分参数 [^4]。 4. **执行微调**:利用 `Trainer` 组件进行模型训练。这个组件简化了训练过程,提供了自动化的梯度下降、损失计算等功能 [^2]。 5. **评估与优化**:使用独立的验证集定期评估模型性能,并据此调整训练策略。此外,还可以应用早停法防止过拟合 [^2]。 6. **部署与监控**:完成训练后,将模型部署至生产环境,并持续监测其表现。如果发现性能下降,则考虑重新收集数据并重复上述步骤。 ### 最佳实践 - 在开始之前明确你的业务目标和技术要求,这样可以帮助你更好地选择合适的模型和服务提供商。 - 对于敏感信息或者隐私数据,请务必采取适当的安全措施,避免泄露风险。 - 保持迭代更新的心态,随着新数据的到来不断改进模型。 - 利用现有的工具库,如 HuggingFace Transformers,它们封装了许多常用功能,可以显著降低开发难度 [^2]。 ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments import datasets # 加载预训练模型及其对应的tokenizer model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # 假设我们有一个名为'dataset'的数据集对象,其中包含'text'字段和'label'字段 def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset, ) # 开始训练 trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值