Softmax损失函数

本文探讨了softmax损失函数的数学表达式及其与SVM损失函数的差异。softmax损失函数能够量化预测值与实际值间的偏差,并且对所有类别间距的变化都敏感。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇博客讨论了SVM的损失函数,本篇博客主要来讨论softmax的损失函数以及两者之间的差别。

首先,softmax损失函数用数学公式可以表示为如下:
Li=log(efyijefj)
其中,fyi 表示经过线性矩阵后真实分类的值,jefj 表示某个样本所有分类值的和。

接下来,讨论3个问题:

1.当最初w趋近于0的时候,Loss为多少?
为类别数的倒数再取对数。可以以此来校验loss function是否书写正确

2.Loss的取值范围?
同SVM的loss一样,[0,+]

3.与SVM的loss function 有什么不同?
SVM的loss function 计算中,当损失类间距大于Δ 时,无论差别多大都没有影响了,也就是说,只有在分类边界附近的数据扰动才会有影响,才会对权重w有作用。
softmax中,无论类别间距差别多大,扰动都会对损失值有影响,只不过是影响大或者小的区别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值