Educational Codeforces Round 42 (Rated for Div. 2)--F. Simple Cycles Edges--点双联通分量

本文介绍了一种算法,用于解决无向图中只在一个简单环中出现的边的问题。通过寻找所有点双联通分量并比较点与边数量,筛选出符合条件的边。实现过程包括构建图结构、进行深度优先搜索(DFS)和使用Tarjan算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

F. Simple Cycles Edges

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an undirected graph, consisting of nn vertices and mm edges. The graph does not necessarily connected. Guaranteed, that the graph does not contain multiple edges (more than one edges between a pair of vertices) or loops (edges from a vertex to itself).

A cycle in a graph is called a simple, if it contains each own vertex exactly once. So simple cycle doesn't allow to visit a vertex more than once in a cycle.

Determine the edges, which belong to exactly on one simple cycle.

Input

The first line contain two integers nn and mm (1≤n≤100000(1≤n≤100000, 0≤m≤min(n⋅(n−1)/2,100000))0≤m≤min(n⋅(n−1)/2,100000)) — the number of vertices and the number of edges.

Each of the following mm lines contain two integers uu and vv (1≤u,v≤n1≤u,v≤n, u≠vu≠v) — the description of the edges.

Output

In the first line print the number of edges, which belong to exactly one simple cycle.

In the second line print the indices of edges, which belong to exactly one simple cycle, in increasing order. The edges are numbered from one in the same order as they are given in the input.

Examples

input

Copy

3 3
1 2
2 3
3 1

output

Copy

3
1 2 3 

input

Copy

6 7
2 3
3 4
4 2
1 2
1 5
5 6
6 1

output

Copy

6
1 2 3 5 6 7 

input

Copy

5 6
1 2
2 3
2 4
4 3
2 5
5 3

output

Copy

0

 

给出一个无向图,求出所有的只在一个简单环中出现的边。简单环:环上点两两不同。

找出所有的点双联通分量,看其点的个数和边的个数是否一样,若是,则累加上边的个数,并记录边。

do{
                    x = stk.top();
                    stk.pop();
                    tmp_edge_set.insert(edge[x].id);
                    tmp_ver_set.insert(edge[x].to);
                    //在这里存储一个点双联通分量里的边、点
                }while(x!=i);

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<vector>
#include<set>
using namespace std;
const int maxn = 1e5+7;
struct EDGE{
	int to,next,id;
}edge[maxn*2];
int n,m,head[maxn],edge_num,Inx,dfn[maxn],low[maxn],used[maxn*2];
stack<int> stk;
vector<int> ans;
void add_edge(int u,int v,int id){
	edge[edge_num].to = v;
	edge[edge_num].next = head[u];
	edge[edge_num].id = id;
	head[u] = edge_num++;
}
void tarjan(int u,int fa){
	dfn[u] = low[u] = ++Inx;
	for(int i=head[u];i!=-1;i=edge[i].next){
		int v = edge[i].to;
		if(v==fa) continue;
		if(used[i]) continue;
		used[i] = used[i^1] = 1;
		stk.push(i);
		if(!dfn[v]){
			tarjan(v,u);
			low[u] = min(low[u],low[v]);
			if(dfn[u]<=low[v]){
                set<int> tmp_ver_set;//记录点的数量
				set<int> tmp_edge_set;//记录边的数量
				tmp_ver_set.insert(u);
				int x;
				do{
					x = stk.top();
					stk.pop();
					tmp_edge_set.insert(edge[x].id);
					tmp_ver_set.insert(edge[x].to);
					//在这里存储一个点双联通分量里的边、点
				}while(x!=i);
				if(tmp_edge_set.size()==tmp_ver_set.size())
					for(set<int>::iterator it=tmp_edge_set.begin();it!=tmp_edge_set.end();it++)
						ans.push_back(*it);//把边加进去
			}
		}
		else low[u] = min(low[u],dfn[v]);
	}
}
int main(){
	scanf("%d %d",&n,&m);
	memset(head,255,sizeof(head));
	for(int i=1;i<=m;i++){
		int u,v;
		scanf("%d %d",&u,&v);
		add_edge(u,v,i);
		add_edge(v,u,i);
	}
	for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i,i);
	sort(ans.begin(),ans.end());
	printf("%d\n",ans.size());
	for(int i=0;i<(int)ans.size();i++) printf("%d ",ans[i]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值