Dijkstra算法思想及代码

本文详细介绍Dijkstra算法,一种用于寻找图中两点间最短路径的经典算法。从初始化顶点距离开始,逐步迭代更新,直至找到所有点的最短路径。通过具体代码实现,帮助读者深入理解算法原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例:求顶点到图中任意一点的距离最小值

思想:

1.首先初始化一个点到其本身距离为0,到其它点距离为无穷,记录距离点为e[i][j],初始化所有点;

2.然后,接着初始化顶点到其它点的距离,记为dis[i],在正式表示顶点算法中dis[i]储存最小距离。初始化是到某一个点i的距离,初始化方式是dis[i]=e[1][i];

3.接着,标记元素,没访问过的记为Q集合,用visit[i]=0表示;访问过的记为P集合,用visit[i]=1表示;

4.预处理完毕,第一层循环,以i表示1...n-1,里面的一个循环是找到距离i最近的点,标记已经访问过;

5.里面的另一层循环是找到刚刚找到的距离第i个顶点距离最短的点,记为u;然后找u到v最短距离;

6.如果v点未被枚举且dis[v]>dis[u]+e[u][v],那么就更新dis[v]的值;

7.继续遍历,直到所有元素都被标记为visit[i]=1;
https://blog.csdn.net/qq_35644234/article/details/60870719这一篇博客写得特别详细;

#include<bits/stdc++.h>
using namespace std;
int e[111][111],dis[111],visit[111];
int n,m;
const int inf=9999999;
void init1()
{
	for(int i=1;i<=n;i++)
	{//n个点;
		for(int j=1;j<=n;j++)
		{
			if(i==j)
			e[i][j]=0;//自己到自己距离设置为0
			else
			e[i][j]=inf;//其它两点间距离为无穷;
		}
	}
}
void init2()
{
	//初始化dis数组,1号顶点到其余各个顶点的初始距离 
	for(int i=1;i<=n;i++)
	{
		dis[i]=e[1][i];//1号地点到其它点距离值;
	}
	//初始化visit数组
	for(int i=1;i<=n;i++)
	{
		visit[i]=0;//默认没遍历过点为0
		/*
            已知最短路程的顶点集合P和未知最短路径的顶点集合Q
            vis[i]=1表示在P集合;vis[i]=0表示在Q集合;
		*/
	}
	visit[1]=1;//起点visit[1]初始化为1
}
void dijkstra()
{
	int i,j,u,v,min;
	for(i=1;i<=n-1;i++)
	{
		//找离i号顶点最近的顶点 
		min=inf;
		for(j=1;j<=n;j++)
		{
			if(visit[j]==0&&dis[j]<min)
			{
				min=dis[j];
				u=j;
			}
		}
		visit[u]=1;//找到1号顶点与之最近的点;
		for(v=1;v<=n;v++)
		{
			if(e[u][v]<inf)
			{//e[u][v]代表u、v两点之间距离;
				if(visit[v]==0&&dis[v]>dis[u]+e[u][v])
                    //v点没访问过并且顶点到其距离大于顶点到u距离加上u、v之间距离;
				dis[v]=dis[u]+e[u][v];//到哪个点的距离为dis[v];
			}
		}
	}
}
int main()
{
	int i,j,t1,t2,t3;
	cin>>n>>m;
	init1();
	//读入边 
	for(i=1;i<=m;i++)
	{
		cin>>t1>>t2>>t3;
		e[t1][t2]=t3;//读入的t3是距离值;
	}
	init2(); 
	dijkstra();//进行算法;
	for(i=1;i<=n;i++)
	{
		cout<<dis[i]<<endl;
	}
	return 0;
}

 

讲解 Dijkstra 算法的基本思想,另外还有算法实现. 当然了,这个算法当路径点上万的时候效率上会降低。 我有另外的改进实现, 上万个点也是在200毫秒内完成。但是不知道怎么添加, 我只能在这里贴关键代码了 : static std::list<Node*> vecNodes; static std::list<Edge*> vecEdges; bool CDijkstras::DijkstrasFindPath(Node* psrcNode, Node* pdstNode, std::list<Node*>& vec, double& fromSrcDist) { if (psrcNode == 0 || pdstNode == 0) return false; if (psrcNode == pdstNode) { vec.push_back(pdstNode); return false; } std::list<Node*>::const_iterator it; for (it=vecNodes.begin(); it!=vecNodes.end(); it++) { (*it)->bAdded = false; (*it)->previous = 0; (*it)->distanceFromStart = MAXDOUBLE; (*it)->smallest = 0; } bool bFindDst = DijkstrasRouteInitialize(psrcNode, pdstNode); fromSrcDist = pdstNode->distanceFromStart; Node* previous = pdstNode; while (previous) { vec.push_back(previous); previous = previous->previous; } m_pDstNode = pdstNode; return bFindDst; } bool CDijkstras::DijkstrasRouteInitialize(Node* psrcNode, Node* pdstNode) { bool bFindDst = false; psrcNode->distanceFromStart = 0; Node* smallest = psrcNode; smallest->bAdded = true; std::list<Node*>::const_iterator it, ait; std::list<Node*> AdjAdjNodes ; for (it=psrcNode->connectNodes.begin(); it!=psrcNode->connectNodes.end(); it++) { if ((*it)->bAdded) continue; (*it)->smallest = psrcNode; (*it)->bAdded = true; AdjAdjNodes.push_back(*it); } while (1) { std::list<Node*> tempAdjAdjNodes; for (it=AdjAdjNodes.begin(); it!=AdjAdjNodes.end(); it++) { Node* curNode = *it; for (ait=curNode->connectNodes.begin(); ait!=curNode->connectNodes.end(); ait++) { Node* pns = *ait; double distance = Distance(pns, curNode) + pns->distanceFromStart; if (distance < curNode->distanceFromStart) { curNode->distanceFromStart = distance; curNode->previous = pns; } if (pns->bAdded == false) { tempAdjAdjNodes.push_back(pns); pns->bAdded = true; } } if (curNode == pdstNode) { bFindDst = true; } } if (bFindDst) break; if (tempAdjAdjNodes.size() == 0) break; AdjAdjNodes.clear(); AdjAdjNodes = tempAdjAdjNodes; } return bFindDst; } // Return distance between two connected nodes float CDijkstras::Distance(Node* node1, Node* node2) { std::list<Edge*>::const_iterator it; for (it=node1->connectEdges.begin(); it!=node1->connectEdges.end(); it++) { if ( (*it)->node1 == node2 || (*it)->node2 == node2 ) return (*it)->distance; } #ifdef _DEBUG __asm {int 3}; #endif return (float)ULONG_MAX; } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ //得到区域的Key// __int64 CDijkstras::GetRegionKey( float x, float z ) { long xRegion = (long)(x / m_regionWidth); long zRegion = (long)(z / m_regionHeight); __int64 key = xRegion; key <<= 32; key |= ( zRegion & 0x00000000FFFFFFFF ); return key; } //得到区域的Key// __int64 CDijkstras::GetRegionKey( long tx, long tz ) { long xRegion = tx ; long zRegion = tz ; __int64 key = xRegion; key <<= 32; key |= ( zRegion & 0x00000000FFFFFFFF ); return key; } //取得一个区域内的所有的路径点, 返回添加的路径点的个数// unsigned long CDijkstras::GetRegionWaypoint (__int64 rkey, std::vector<Node*>& vec) { unsigned long i = 0; SAME_RANGE_NODE rangeNode = mmapWaypoint.equal_range(rkey); for (CRWPIT it=rangeNode.first; it!=rangeNode.second; it++) { i++; Node* pn = it->second; vec.push_back(pn); } return i; } inline bool cmdDistanceNode (Node* pNode1, Node* pNode2) { return pNode1->cmpFromStart < pNode2->cmpFromStart; }; //添加一个路径点// Node* CDijkstras::AddNode (unsigned long id, float x, float y, float z) { Node* pNode = new Node(id, x, y, z); __int64 rkey = GetRegionKey(x, z); mmapWaypoint.insert(make_pair(rkey, pNode)); mapID2Node[id] = pNode; return pNode; } //添加一条边// Edge* CDijkstras::AddEdge (Node* node1, Node* node2, float fCost) { Edge* e = new Edge (node1, node2, fCost); return e; } //通过路径点ID得到路径点的指针// Node* CDijkstras::GetNodeByID (unsigned long nid) { std::map<unsigned long, Node*>::const_iterator it; it = mapID2Node.find(nid); if (it!=mapID2Node.end()) return it->second; return NULL; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值