剑指offer-12 -- 数值的整数次方 - C++

本文探讨了求解浮点数的整数次幂的三种算法:暴力方法、递归快速幂及非递归快速幂。介绍了如何处理负指数的情况,并通过代码实现展示了每种方法的具体操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个double类型的浮点数base和int类型的整数exponent。求base的exponent次方。

 

保证base和exponent不同时为0

预处理:求pow(b, n),如果n为负数怎么解决?

假如求x的-2次方,是不是可以转换成(1/x)的2次方
于是,预处理代码如下:

double Power(double b, int n) {
    if (n < 0) {
        b = 1 / b;
        n = -n;
     }
}

方法一:暴力方法

很显然就是n个b相乘。循环n次

class Solution {
public:
    double Power(double base, int exponent) {
        if(exponent <0){
            base = 1 / base;
            exponent = -exponent;
        }
        double ret = 1.0;
        for(int i=0; i<exponent; i++){
            ret *= base;
        }
        return ret;
    }
};

时间复杂度:O(n)
空间复杂度:O(1)

方法二:递归法(快速幂)

class Solution {
public:
    double q_power(double b, int n) {
        if (n == 0) return 1.0;
        double ret = q_power(b, n/2);
        if (n&1) { // 奇数
            return ret * ret * b;
        }
        else {
            return ret * ret;
        }
    }
    double Power(double b, int n) {
        if (n < 0) {
            b = 1 / b;
            n = -n;
        }
        return q_power(b, n);
    }
};

方法三:非递归的快速幂

class Solution {
public:
    double Power(double base, int exponent) {
        if(exponent <0){
            base = 1 / base;
            exponent = -exponent;
        }
        double ret = 1.0;
        while(exponent){
            if(exponent&1){
                ret *= base;
            }
            base *= base;
            exponent = exponent >> 1;
        }
        return ret;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值