1. 项目概述
该项目实现了一个基于YOLOv8模型和EasyOCR库的车牌智能识别系统。系统可以自动检测图像中的车牌并识别车牌号码。项目分为两个主要部分:
- 车牌检测:使用YOLOv8模型检测图像中的车牌区域。
- 车牌字符识别:通过EasyOCR库对车牌图像中的字符进行识别。
2. 环境要求
- 操作系统:适用于Linux、Windows和macOS
- Python版本:Python 3.6及以上版本
- 硬件要求:
- 推荐使用具有GPU支持的计算机,以加速YOLOv8模型推理。
- 至少8GB内存
- 具有NVIDIA显卡(可选),以加速深度学习模型训练与推理。
3. 安装依赖
安装所需的Python依赖包:
pip install torch torchvision torchaudio pip install opencv-python pip install easyocr pip install yolov8 pip install matplotlib
4. 代码结构
项目的代码分为几个模块,主要包括车牌检测、字符识别和主程序。以下是代码目录结构:
car_plate_recognition/ │ ├── main.py