大白话讲清楚:什么是 Langchain 及其核心概念

在AI和机器学习领域,每天都有新技术和框架涌现。今天,我们来聊聊最近引起广泛关注的一个框架 —— Langchain。

d28a6f64299399ba29c0293652101869.png

https://python.langchain.com/docs/get_started/introduction

那么,Langchain到底是什么,它为什么这么受欢迎,以及它是如何工作的呢?

别担心,我会用大白话帮你一步步弄明白!

1、Langchain 简介

想象一下,如果你能让聊天机器人不仅仅回答通用问题,还能从你自己的数据库或文件中提取信息,并根据这些信息执行具体操作,比如发邮件,那会是什么情况?Langchain 正是为了实现这一目标而诞生的。

Langchain 是一个开源框架,它允许开发人员将像 GPT-4 这样的大型语言模型与外部的计算和数据源结合起来。目前,它提供了 Python 和 JavaScript(确切地说是 TypeScript)的软件包。

ef5284013e6a6c04bcc078e4fcb767e2.png

上图展示了Langchain的工作原理,这是一个用于提升大型语言模型(LLMs)功能的框架。

它通过三个核心组件实现增强:

  • 首先是 Compents“组件”,为LLMs提供接口封装、模板提示和信息检索索引;

  • 其次是 Chains“链”,它将不同的组件组合起来解决特定的任务,比如在大量文本中查找信息;

  • 最后是 Agents“代理”,它们使得LLMs能够与外部环境进行交互,例如通过API请求执行操作。

Langchain 的这种结构设计使LLMs不仅能够处理文本,还能够在更广泛的应用环境中进行操作和响应,大大扩展了它们的应用范围和有效性。

如果上面还不够大白话,我的理解 LangChain 就等价于数据库领域的 JDBC

LangChain 和 JDBC 确实有一些相似之处,特别是它们都作为连接和集成不同系统的桥梁。

它们都扮演了一种中介的角色,允许开发者利用特定技术(AI 或数据库)与其他系统或应用进行交互。

00e0212a89bc8ff685398af3fe7affc7.png

2、为什么要用 Langchain?

数据连接:Langchain 允许你将大型语言模型连接到你自己的数据源,比如数据库、PDF文件或其他文档。这意味着你可以使模型从你的私有数据中提取信息。

行动执行:不仅可以提取信息,Langchain 还可以帮助你根据这些信息执行特定操作,如发送邮件。无需硬编码:它提供了灵活的方式来动态生成查询,避免了硬编码的需求。

3、Langchain 核心概念

Langchain 由几个核心概念组成:

LLM Wrappers:这些包装器允许你连接到大型语言模型,如 GPT-4 或 Hugging Face 提供的模型。Prompt Templates:这些模板让你避免硬编码文本输入。你可以动态地将用户输入插入到模板中,并发送给语言模型。Indexes:索引帮助你从语言模型中提取相关信息。Chains:链允许你将多个组件组合在一起,解决特定的任务,并构建完整的语言模型应用程序。Agents:代理允许语言模型与外部API交互。

9b19621e30d2f6e79840bb47c3b5ccfb.png

上图展示了一个复杂的语言处理系统,其中包含模型、提示、链、代理和嵌入与向量存储。

  • 模型 Models 负责理解和生成语言,提示用于引导模型输出;

  • 链条 Chains 代表将多个步骤串联起来完成复杂任务的过程;

  • 代理 Agents 则用于让模型与外部环境互动,比如执行API调用。

  • Embedding 嵌入与向量存储 VectorStore 是数据表示和检索的手段,为模型提供必要的语言理解基础。

图中的鹦鹉是一个比喻或者象征,表示这个系统的自然语言处理能力,或者可能暗示系统的输出可以像鹦鹉一样“复述”或者是“回应”用户的输入。如此,这整个系统构成了一个高度集成的框架,能够处理高级语言任务并在多种环境下进行动态交互。

4、Langchain 如何工作?

Langchain 的工作流程可以概括为以下几个步骤:

提问:用户提出问题。向语言模型查询:问题被转换成向量表示,用于在向量数据库中进行相似性搜索。获取相关信息:从向量数据库中提取相关信息块,并将其输入给语言模型。生成答案或执行操作:语言模型现在拥有了初始问题和相关信息,能够提供答案或执行操作。

7f3489b5e2caa62a43688138b7765e1d.png

举例:如上图所示展示了一个智能问答系统的工作流程,它从用户提出的问题(Question)开始,然后通过相似性搜索(Similarity Search)在一个大型数据库或向量空间中找到与之相关的信息。

得到的信息与原始问题结合后,由一个处理模型分析,以产生一个答案(Answer)。

这个答案接着被用来指导一个代理采取行动(Action),这个代理可能会执行一个API调用或与外部系统交互以完成任务。

整个流程反映了数据驱动的决策过程,其中包含了从信息检索到处理,再到最终行动的自动化步骤。

5、Langchain 应用场景

Langchain 的应用场景非常广泛,包括但不限于:

个人助手:可以帮助预订航班、转账、缴税等。

学习辅助:可以参考整个课程大纲,帮助你更快地学习材料。

数据分析和数据科学:连接到公司的客户数据或市场数据,极大地促进数据分析的进展。

总之,Langchain 打开了一个充满可能性的新世界,让AI技术更加贴近我们的实际需求和数据,使得机器学习应用的发展更加多样化和个性化。

希望这篇文章能帮你对 Langchain 有了更清晰的认识!

下一篇有代码实战,你不妨也过一下哈。欢迎留言交流......

参考

1.https://www.youtube.com/watch?v=lG7Uxts9SXs

2.https://www.youtube.com/watch?v=aywZrzNaKjs

推荐阅读

  1. 全网首发!从 0 到 1 Elasticsearch 8.X 通关视频

  2. 重磅 | 死磕 Elasticsearch 8.X 方法论认知清单

  3. 如何系统的学习 Elasticsearch ?

  4. 2023,做点事

  5. Elasticsearch 8.X “图搜图”实战

9c099f5697139f374f578df2db1a3936.jpeg

更短时间更快习得更多干货!

和全球 近2000+ Elastic 爱好者一起精进!

c39c1190def2d0d679221d42b635dd93.gif

比同事抢先一步学习进阶干货!

<think>好的,用户现在想了解“关注点分离”的概念及其在软件开发中的意义,并要求用简单的语言解释。用户之前的问题是关于Shader、Program和渲染流程,现在转向软件开发原则,特别是关注点分离(Separation of Concerns, SoC)。我需要结合用户提供的引用内容,尤其是引用[3]提到了SoC,引用[4]也涉及到分层和可见性控制,这些都可能与SoC相关。 首先,我需要明确关注点分离的定义。根据引用[3],SoC是软件开发中的一项重要原则,可能属于GRASP(通用责任分配原则)的一部分。用户提供的引用中,引用[2]提到了DRY和SOLID原则,但没有直接提到SoC,但引用[4]提到分层设计,控制内部可见性,这可能与SoC有关联,比如在架构设计中的分层就是关注点分离的一种体现。 接下来,我需要用简单易懂的语言解释SoC。用户希望用简单语言,所以需要避免技术术语,多用比喻或日常例子。例如,把软件比作餐厅,不同的部门负责不同任务,如厨房做菜,服务员接待客人,收银处理付款,这样各司其职,互不干扰,这就是关注点分离。 然后,要结合用户提供的引用中的例子。比如引用[5]中的代码示例,函数countEmptyLinesInFile将文件读取和空行计数耦合在一起,不符合SoC。改进后的例子将读取数据和业务逻辑分开,这就是应用SoC的实例。需要解释为什么这样的设计更好,比如提高可维护性、复用性等。 另外,引用[4]提到分层设计,控制各层的可见性,这也是SoC的应用。比如在软件架构中,将数据访问层、业务逻辑层和表示层分离,每层只关注自己的职责,减少相互依赖。 同时,要提到SoC与其他原则的关系,比如KISS、DRY、SOLID,尤其是引用[2]和[3]提到的这些原则,说明它们如何共同促进代码质量。 还要注意用户可能的需求:他们可能在实际开发中遇到代码难以维护或功能混杂的问题,想通过SoC来解决。因此,需要给出实际应用场景和好处,比如模块化开发、团队协作、测试维护等。 最后,检查是否遗漏了用户提供的引用中的相关点,确保引用[3]、[4]、[5]的内容被合理引用,并在回答末尾添加引用标识。比如引用[3]提到SoC是GRASP的一部分,引用[5]的代码示例作为反面教材和改进案例,引用[4]的分层架构作为实际应用。 总结回答结构:定义SoC,比喻解释,代码示例分析,实际应用场景,与其他原则的关系,好处总结,相关问题扩展。</think>### **关注点分离原则(Separation of Concerns, SoC)的通俗解释** --- #### **1. 一句话定义** **关注点分离**(SoC)是软件设计中“**各司其职**”的原则,核心思想是**将复杂问题拆解为多个独立的小问题**,每个部分只专注于解决一件事[^3]。 --- #### **2. 生活中的类比** 想象一家餐厅: - **厨房**只负责做菜 - **服务员**只负责接待顾客 - **收银台**只处理付款 如果让厨师同时做菜、端盘子、算账,餐厅会混乱不堪。同样,**软件中的每个模块/组件也应专注于单一职责**。 --- #### **3. 代码中的典型案例** ##### **反面教材**(引用[5]的代码) ```go // 函数既读取文件,又统计空行(耦合了两个职责) func countEmptyLinesInFile(filename string) (int, error) { file, err := os.Open(filename) // 职责1:文件操作 if err != nil { return 0, err } // 职责2:业务逻辑(统计空行) scanner := bufio.NewScanner(file) count := 0 for scanner.Scan() { if strings.TrimSpace(scanner.Text()) == "" { count++ } } return count, nil } ``` **问题**:文件读取与业务逻辑混杂,难以复用或修改。 ##### **改进后**(应用SoC) ```go // 职责1:文件读取(纯数据获取) func readLines(filename string) ([]string, error) { file, err := os.Open(filename) if err != nil { return nil, err } defer file.Close() var lines []string scanner := bufio.NewScanner(file) for scanner.Scan() { lines = append(lines, scanner.Text()) } return lines, scanner.Err() } // 职责2:业务逻辑(统计空行) func countEmptyLines(lines []string) int { count := 0 for _, line := range lines { if strings.TrimSpace(line) == "" { count++ } } return count } ``` **优势**: - 文件读取逻辑可复用(如统计其他数据) - 统计逻辑可独立测试(无需真实文件) - 修改文件来源(如从网络读取)不影响业务逻辑 --- #### **4. 实际应用场景** 1. **分层架构**(引用[4]的层间关系) - **数据层**:只处理数据库操作 - **业务层**:只处理计算逻辑 - **展示层**:只处理UI交互 *示例*:修改数据库类型时,只需改动数据层,其他层不受影响。 2. **前端开发** - **HTML**:定义内容结构 - **CSS**:控制样式外观 - **JavaScript**:实现交互逻辑 3. **微服务架构** - 订单服务、支付服务、库存服务各自独立部署,通过API通信。 --- #### **5. 与其他原则的关系** | 原则 | 与SoC的关联 | |------------|---------------------------------------------| | **KISS** | 拆分复杂问题后,每个小问题更简单(引用[2]) | | **DRY** | 分离后的模块更易复用,减少重复代码(引用[2]) | | **SOLID** | 单一职责原则(SRP)是SoC的具体实现(引用[3]) | --- #### **6. 为什么要这样做?** - **降低复杂度**:人类大脑更擅长处理小问题 - **提高可维护性**:修改一个模块不会“牵一发而动全身” - **促进协作**:团队成员可并行开发不同模块 - **便于测试**:独立模块更容易编写单元测试 --- ### **相关问题** 1. 如何判断一个模块是否违背了关注点分离原则? 2. 在敏捷开发中如何平衡SoC与快速迭代的需求? 3. 关注点分离与微服务拆分粒度有什么关系?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铭毅天下

和你一起,死磕Elastic!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值