安装、测试和训练OpenPCDet:一篇详尽的指南

简介

OpenPCDet是一个用于3D目标检测的开源工具箱,它提供了多种数据集的加载器,支持多种模型,并且易于扩展。在本博客中,我将引导你完成OpenPCDet的安装过程,并展示如何测试和训练预训练模型。

安装OpenPCDet

环境要求

在开始之前,请确保你的系统满足以下要求:

  • Linux操作系统(Ubuntu 14.04/16.04/18.04/20.04/21.04已测试)
  • Python 3.6或更高版本
  • PyTorch 1.1或更高版本(测试了1.1, 1.3, 1.5到1.10)
  • CUDA 9.0或更高版本(PyTorch 1.3+需要CUDA 9.2+)
  • spconv库(v1.0, v1.2或v2.x)

安装步骤

  1. 克隆仓库

    git clone https://github.com/open-mmlab/OpenPCDet.git
    #官网测试的是pcdet v0.5
    #可以直接使用master进行编译,等其出错再说。
    #使用如下命令进行切换
    git tag
    #v0.1.0
    #v0.1.1
    #v0.2.0
    #v0.3.0
    #v0.5.0
    #v0.5.2
    git checkout v0.5.2
  2. 安装依赖库

    • 安装SparseConv库。根据你的PyTorch版本选择合适的spconv版本。
    • 对于PyTorch 1.1,安装spconv v1.0(commit 8da6f96)。
    • 对于PyTorch 1.3+,安装spconv v1.2或使用作者推荐的Docker。
    • 或者,你可以使用pip安装最新的spconv v
### 如何安装 OpenPCDet #### 系统需求与准备 为了成功安装配置 OpenPCDet,在开始之前需确认操作系统为 Ubuntu 22.04 或者其他兼容版本。对于硬件方面的要求,建议使用配备有 NVIDIA GPU 的计算机来加速训练过程。 #### 安装NVIDIA显卡驱动程序 确保已正确安装适用于系统的最新版 NVIDIA 显卡驱动程序[^1]。这一步骤至关重要,因为后续的 CUDA cuDNN 库依赖于这些驱动程序正常工作。 #### 安装CUDA与cuDNN 按照官方指南完成 CUDA 11.8 版本以及配套 cuDNN 库的安装。此步骤同样基于所使用的硬件平台而有所不同;务必参照具体设备对应的文档进行操作。 #### 创建Python虚拟环境 推荐创建一个新的 Python 虚拟环境用于隔离不同项目的依赖关系。可以通过 `conda` 或者 `venv` 工具轻松实现这一点: ```bash # 使用 conda 创建名为 opencd_env 的新环境,并激活它 conda create -n opencd_env python=3.7 conda activate opencd_env ``` #### 安装PyTorch及相关库 根据个人计算资源情况选择合适的 PyTorch 版本(CPU/GPU),并通过 pip 命令行工具执行安装命令: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 注意这里选择了支持 CUDA 11.3 的 PyTorch 构建版本作为例子,请依据实际情况调整 URL 参数[^3]。 #### 获取OpenPCDet源码并设置开发环境 通过 Git 将最新的 OpenPCDet 源代码克隆至本地机器上,接着进入该项目文件夹内运行如下指令以满足所有必需项的需求: ```bash git clone https://github.com/open-mmlab/OpenPCDet.git cd OpenPCDet pip install -r requirements.txt ``` 特别需要注意的是 Spconv (Sparse Convolution) 组件的编译与安装,这是处理三维点云数据的核心模块之一。遵循特定指导完成其构建流程能够显著提升性能表现。 #### 测试安装成果 最后验证整个框架能否顺利启动 demo 示例程序,以此检验先前所做的准备工作是否无误。如果一切正常,则表明已经成功搭建好了 OpenPCDet 开发环境。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值