
领域迁移
文章平均质量分 86
Layumi1993
计算机视觉菜鸟
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
TIP2022|领域迁移Adaboost,让模型“选择”学哪些数据
因为就像Adaboost一样,我们让模型overfit难样本,为了获得一个互补的模型,这个单模型在单独使用的情况下,不一定能更好。根据训练过程中的snapshot(可以看成弱分类器),来针对性“选择”难样本,提高他们采样到的概率,如下图。通过这种方法 我们可以每轮训练一个模型,得到weak models (这都是在一次训练中的),我们通过weight moving average的方式 得到 Student Aggregation 也就是 “臭皮匠们组成的诸葛亮”。传统方案,显然我们组合后的模型较为稳定。原创 2022-12-24 11:48:09 · 709 阅读 · 0 评论 -
利用Uncertainty修正Domain Adaptation中的伪标签
论文题目: Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation 论文地址: https://arxiv.org/pdf/2003.03773.pdf 作者:Zhedong Zheng, Yi Yang 代码: https://github.c...原创 2020-04-24 07:25:05 · 1910 阅读 · 0 评论