数学建模笔记——层次分析法
数学建模笔记——层次分析法
层次分析法( Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。
1. 层次分析法的基本原理和步骤
人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。
运用层次分析法建模,大体上可按下面四个步骤进行:
- 建立递阶层次结构模型;
- 构造出各层次中的所有判断矩阵;
- 层次单排序及一致性检验;
- 层次总排序及一致性检验。
下面说明这四个步骤的实现过程
2. 层次分析法的建模过程
2.1 问题的提出
新浪微博要选出一个明星作为微博之星,现在有三个候选明星A、B、C,该选择哪位明星呢?
考虑一个明星的成就可以看其粉丝数、颜值、作品数量、作品质量(考虑用作品某瓣平均评分代替)
A、B、C的相关数据如下表 1 明星成就表
明星 粉丝数 颜值 作品质量 作品数量 A 6000w 10 6.5 25 B 3400w 6 8.1 46 C 5500w 8 7.5 31
2.2 模型原理
应用 AHP分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。在这个模型下,复杂问题被分解为元素的组成部分。这些元素又按其属性及关系形成若干层次。上一层次的元素作为准则对下一层次有关元素起支配作用。这些层次可以分为三类:
- 最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
- 中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
- 最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。每一层次中各元素所支配的元素一般不要超过 9 个。这是因为支配的元素过多会给两两比较判断带来困难。

2.3 为该问题建立层次结构模型
建立的递阶层次结构模型如下

2.4 构造判断矩阵
1. 判断矩阵的含义
- 对指标的重要性进行两两比较,构造判断矩阵,从而科学求出权重
- 矩阵中元素 a i j a_{ij} aij的意义是,第 i i i个指标相对第 j j j个指标的重要程度
定义 1 若矩阵 A = ( a i j ) n × n A=(a_ij)_{n\times n} A=(aij)n×n满足
- a i j > 0 a_{ij}>0 aij>0
- a j i = 1 a i j a_{ji}=\frac1{a_{ij}} aji=aij1( i , j = 1 , 2 , ⋯ , n i,j=1,2,\cdots,n i,j=1,2,⋯,n)
则称之为正互反矩阵(易见 a i i = 1 , i = 1 , ⋯ , n a_{ii}=1,i=1,\cdots,n aii=1,i=1,⋯,n )。
关于如何确定 a i j a_{ij} aij 的值,Saaty 等建议引用数字 1~9 及其倒数作为标度。表 7- 1 列出了 1~9 标度的含义:
标度 | 含义 |
---|---|
1 | 表示两个因素相比 具有相同重要性 |
3 | 表示两个因素相比,前者比后者稍重要 |
5 | 表示两个因素相比,前者比后者明显重要 |
7 | 表示两个因素相比,前者比后者强烈重要 |
9 | 表示两个因素相比,前者比后者极端重要 |
2, 4, 6, 8 | 表示上述判断的中间值 |
倒数 | 若因素 i 与因素 j 的重要性之比为 a i j a_{ij} aij,那么因素 j 与因素 i 的重要性之比为 a j i = 1 / a i j a_{ji}=1/a_{ij} aji=1/aij |
2. 为该问题构造判断矩阵
依次对矩阵进行两两比较,得到完整的判断矩阵,如表3所示
粉丝数 | 颜值 | 作品质量 | 作品数量 | |
---|---|---|---|---|
粉丝数 | 1 | 2 | 3 | 5 |
颜值 | 1/2 | 1 | 1/2 | 2 |
作品质量 | 1/3 | 2 | 1 | 1/2 |
作品数量 | 1/5 | 1/2 | 2 | 1 |
由于两两比较的过程中忽略了其他因素,最后导致最后结果可能出现矛盾
a 23 = 1 2 a_{23}=\frac{1}{2} a23=21说明作品质量比颜值重要
a 24 = 2 a_{24}=2 a24=2说明颜值比作品数量重要
由上面两个结果可以推出作品质量比作品数量重要
而由 a 34 = 1 2 a_{34}=\frac{1}{2} a34=21推出作品数量比作品质量重要,产生了矛盾
因此我们需要进行一致性检验避免上述情况
2.5 一致性检验
1. 一致性检验方法
判断矩阵 A A A对应于最大特征值 λ m a x \lambda_\mathrm{max} λmax的特征向量 W W W ,经归一化后即为同一层次相应因素对于上一层次某因素相对重要性的排序权值,这一过程称为层次单排序。
上述构造成对比较判断矩阵的办法虽能减少其它因素的干扰,较客观地反映出一对因子影响力的差别。但综合全部比较结果时,其中难免包含一定程度的非一致性。如果比较结果是前后完全一致的,则矩阵 A A A的元素还应当满足:
a i j a j k = a i k , ∀ i , j , k = 1 , 2 , ⋯ n a_{ij}a_{jk}=a_{ik},\quad\forall i,j,k=1,2,\cdots n aijajk=aik,∀i,j,k=1,2,⋯n
定义 2 满足上述关系式的正互反矩阵称为一致矩阵。
需要检验构造出来的(正互反)判断矩阵 A A A是否严重地非一致,以便确定是否接受 A A A。
定理 1 正互反矩阵 A A A的最大特征根 λ m a x \lambda_\mathrm{max} λmax必为正实数,其对应特征向量的所有分量均为正实数。 A A A的其余特征值的模均严格小于 λ m a x \lambda_\mathrm{max} λmax 。
定理 2 若 A A A为一致矩阵,则
- A A A必为正互反矩阵。
- A A A的转置矩阵 A T A^T AT也是一致矩阵。
- A A A 的任意两行成比例,比例因子大于零,从而 rank ( A ) = 1 \oper