3D点云处理:拟合平面_最小二乘法(拉格朗日 SVD)(附源码)

57 篇文章 ¥399.90 ¥499.90
本文详细探讨了3D点云数据的平面拟合,通过最小二乘法的直接求解、拉格朗日乘子法和SVD分解法进行分析。对比结果显示,SVD分解法在处理噪声数据时表现出更好的拟合效果。此外,还介绍了随机采样(RANSAC)方法来拟合平面的基本原理和实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


订阅说明:如果要订阅,先看链接内容 看链接内容 看链接内容:订阅先看此内容



文章目录:3D视觉个人学习目录


拟合效果

  • 左侧为拉格朗日结果,右侧图为SVD求解结果,红色为拟合的平面,白色为原始点云。
  • 对比1:svd求解的效果优于拉格朗日,
    在这里插入图片描述
  • 对比2:噪点相对多一些时的结果,未具体统计,SVD拟合的平面偏离的待拟合平面。
    在这里插入图片描述
  • 随机采样结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

让让布吉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值