从零本地部署大模型(零基础友好版)

最近在做大模型,自己折腾了小半年,摸索出来了一些经验,写这篇blog的目的是为了让师弟师妹在模型部署的环节少走弯路,也能快速体验到LLM的智能,减少部署环节的痛苦

如果是进行只需要跑通模型当前流行的6b7b参数模型,至少要保证显卡10G显存并且cuda版本最好高于11.x,如果是需要训练可能需要更大的显存,16b参数以上的模型还是推荐上V100。

部署模型有四件事情要做:

1.确定本地硬件是否支持大模型部署。

2.确定模型需要的依赖。

3.下载好模型的权重和配置文件。

4.运行模型

以下就开始详细介绍模型部署的每一个问题和解决方案。

1.确定本地硬件是否支持需要部署的大模型。

如果需要部署大模型,首先要确定系统是Linux还是Windows

建议使用Linux系统,因为很多python包目前不支持Windows,其次要确定GPU显存和Nvidia版本是否支持,可以通过shell命令查看,目前AMD公司的显卡暂时不支持pytorch。

nvidia-smi

以下是输出结果,可以查看到Nvidia版本号,CUDA版本号,以及显卡型号和显存大小。

如果只是需要跑通模型,进行输入输出,至少需要10G和CUDA版本11.x以上的GPU,如果需要训练的话可能需要更大的GPU

如果安装了最新的Nvidia驱动请跳过第一步

1.安装Nvidia驱动:

Nvidia官网驱动下载页

选择自己的显卡型号,查看支持的nvdia驱动,最好选较高的CUDA-toolkit的版本例如11.7,这样可以免后续出现环境冲突。

方法一:利用wget命令使用官网链接下载:(推荐这一种)

点击搜索,然后跳转到下载页,右键下载并复制链接

输入命令:(需要复制为适合自己显卡型号的Nvidia驱动下载链接)

$ wget https://www.nvidia.cn/content/DriverDownloads/confirmation.php?url=/tesla/515.105.01/NVIDIA-Linux-x86_64-515.105.01.run&lang=cn&type=Tesla

执行安装:

$ chmod +x NVIDIA-Linux-x86_64-515.105.01.run
$ ./NVIDIA-Linux-x86_64-515.105.01.run

方法二:查看符合自己GPU的Nvidia驱动版本之后本地命令直接查询并下载

执行以下命令

$ sudo add-apt-repository ppa:graphics-drivers/ppa 
$ sudo apt-get update
$ sudo apt-cache search nvidia-* 
$ sudo apt-get install nvidia-版本号 

执行 $ sudo apt-cache search nvidia-* 能查看到当前可以使用的所有版本
执行 $ sudo apt-get install nvidia-版本号 ,如: $ sudo apt-get install nvidia-384
执行上述命令即可安装;需要重启

$ sudo reboot

安装Nvidia驱动大概率会出现以下报错:

ERROR: The Nouveau kernel driver is currently in use by your system.  This driver is incompatible with the NVIDIA driver, and must be disabled before proceeding.  Please consult the NVIDIA driver README and your Linux distribution's             
         documentation for details on how to correctly disable the Nouveau kernel driver.

则需要禁用原有的Nouveau kernel driver:

$ echo "blacklist nouveau" >> /etc/modprobe.d/blacklist-nouveau.conf
$ update-initramfs -u
$ echo "options nouveau modeset=0" >> /etc/modprobe.d/nouveau-kms.conf

然后重启:

$ sudo reboot

然后输入Nvidia-smi查看是否存在Nvidia信息。

2.安装CUDA

输入以下命令查看CUDA版本信息,如果已经安装CUDA则会输出版本信息

$ nvcc -V

如果已经安装CUDA11.x版本请跳过此步骤

在Nvidia-smi中的CUDA版本号会限制我们的CUDA版本,所以我们不能超过这个版本号

进入CUDA官网:CUDA官网

选择适合自己的CUDA版本号,并进入链接,以11.7.0版本为例,选择自己的环境信息,如果是Windows系统在OS中选择Windows

输入以下命令进行安装

$ sudo sh cuda_11.7.0_515.43.04_linux.run


一直同意即可完成安装,如果Nvidia驱动没有安装会在此提示搭配的Nvidia驱动版本。

如果出现以下报错:

ubuntu@VM-0-16-ubuntu:~$ nvcc -V

Command 'nvcc' not found, but can be installed with:

sudo apt install nvidia-cuda-toolkit

千万不要使用其推荐的命令,否则会安装不适配的nvidia-cuda-toolkit,需要进行环境变量配置:

sudo vim ~/.bashrc

在文件结尾添加:

export PATH=/usr/local/cuda-11.7/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64:$LD_LIBRARY_PATH

如果不是安装的11.7则需要换成自己的版本号。如果不会用vim,按a键可以编辑,退出的时候按esc键然后按引号冒号:接推出命令,:wq为写入并退出vim,:q为不写入退出,:q!为不写入强制退出。

更新环境变量:

$ source ~/.bashrc

查看CUDA信息:

$ nvcc -V

至此,我们已经把Nvidia驱动和CUDA驱动安装成功,可以开始对我们的模型环境进行配置了。

2.配置模型环境

这里每个模型需要的环境可能不尽相同,以下笔者用THUDM/CodeGeeX2作为例子

需要进入THUDM/CodeGeeX2的GitHub页面尽可能在部署模型之前完整阅读readme。

克隆项目到本地:

$ git clone https://github.com/THUDM/CodeGeeX2.git

进入项目浏览目录:

$ cd CodeGeeX2

打开项目中的requirement.txt文件:requirements.txt

我们可以发现他的环境需要如下包:

为了安装的环境可以干净且不受其他项目环境的影响我们应该安装conda并创建一个虚拟空间:

1.安装Anaconda3

进入anacondo官网Anaconda官网

选择适合自己系统的版本:

这里我以自己的版本为例:Anaconda3-5.3.0-Linux-x86_64.sh

在这个版本的蓝色字体处点击右键复制链接

在shell里面输入命令,以我的版本为例(不对的话应该换成自己下载的版本名)

$ wget https://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.sh

安装Anaconda3

可能会出现sh命令不能使用:执行以下命令

$ chmod +x Anaconda3-5.3.0-Linux-x86_64.sh

执行以下命令

$ sh ./Anaconda3-5.3.0-Linux-x86_64.sh

进入Anaconda安装页面:

一路点击enter,会询问是否添加进入环境变量,这里输入yes,并按enter。

是否加入mircosoft vs code这里根据自己需要选择,感觉不太需要就输入no并按enter。

安装完成,输入:

$ conda info

查看condo信息

如果报错,更新系统环境文件:

$ source .bashrc

继续输入

$ conda info

出现以下界面即为安装成功:

2.创建一个conda虚拟环境

输入以下命令以创建环境:

conda create -n MagicFairyCastle(输入虚拟环境名字) python=3.10(输入自己需要的版本号)

一路选yes:

激活虚拟环境:

$ conda activate MagicFairyCastle

用户名前面出现(虚拟环境名)即安装成功

给Conda配置国内源:(先跳过这一步,有问题再回来)

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

如果有问题可以恢复为默认源:

conda config --remove-key channels

同时补充pip源:

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
pip config set install.trusted-host mirrors.aliyun.com

3.安装torch2.0.0,torchvision

torch有CPU版本和GPU版本,如果直接pip install torch可能会自动下载CPU版本导致无法使用GPU加速:

进入torch官网:torch官网,选择torch,进入页面选择适合自己Python版本和CUDA版本的GPU版torch2.0.0,我这里是Python3.10和CUDA11.7而且是Linux的X86_64版本:

选择适合自己的版本,右键复制链接,然后输入以下wget下载命令(要对照自己的版本链接进行改动):

$ wget https://download.pytorch.org/whl/cu117/torch-2.0.0%2Bcu117-cp310-cp310-linux_x86_64.whl

下载地址为当前目录,运行安装包:

$ pip install torch-2.0.0%2Bcu117-cp310-cp310-linux_x86_64.whl

然后同样方法下载torchvision:

$ wget https://download.pytorch.org/whl/cu117/torchvision-0.15.0%2Bcu117-cp310-cp310-linux_x86_64.whl
$ pip install torchvision-0.15.0+cu117-cp310-cp310-linux_x86_64.whl

查看是否安装成功:

$ pip list

检查是否可以运行torch:

$ python

import torch
# 检测torch、cuda、cudnn版本
print(torch.__version__)
print(torch.version.cuda)
print(torch.backends.cudnn.version())

# 是否可用gpu
flag = torch.cuda.is_available()
print(flag)

输出应该是版本信息和CUDA是否可用

2.0.0 
11.7 
true
4.按照requirements.txt文件安装其他相应依赖:
$ pip install 包名

如果pip 报错无法连接可以使用清华源作为镜像:

$ pip install package(修改为需要下载的包名) -i https://pypi.tuna.tsinghua.edu.cn/simple

嫌麻烦的话也可以进入CodeGeeX2目录批量下载并安装:

$ pip install -r requirements.txt

3.下载模型权重

(如果你的模型不是CodeGeeX2,可以去🤗huggingface搜索,并在模型页面的files and versions下载模型权重文件和配置文件)

再次回到GitHub模型主页,找到模型权重的下载地址:1.模型权重以及配置文件下载

模型权重下载

将所有的文件链接复制然后,在模型目录中新建一个文件夹保存这些项目,例如我用来存放权重文件的目录为/home/ubuntu/model

进入该文件夹之后:

$ cd /home/ubuntu/model

下载所有模型配置文件:

$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/.gitattributes
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/LICENSE
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/MODEL_LICENSE
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/README.md
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/config.json
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/configuration_chatglm.py
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/generation_config.json
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/modeling_chatglm.py
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/pytorch_model-00001-of-00007.bin
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/pytorch_model-00002-of-00007.bin
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/pytorch_model-00003-of-00007.bin
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/pytorch_model-00004-of-00007.bin
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/pytorch_model-00005-of-00007.bin
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/pytorch_model-00006-of-00007.bin
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/pytorch_model-00007-of-00007.bin
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/pytorch_model.bin.index.json
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/quantization.py
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/save_model.py
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/tokenization_chatglm.py
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/tokenizer.model
$ wget https://huggingface.co/THUDM/codegeex2-6b/resolve/main/tokenizer_config.json

进入到模型项目的/CodeGeeX2/demo/run_demo.py中,将add_code_generation_args(parse):函数中的model_path改成存放模型配置文件以及权重文件的目录:如果不知道在哪可以输入确定当前路径:

$ pwd
2.更改权重路径

4.运行模型

现在让我们开始最后一步:python run_demo.py

至此,大模型的部署可能会遇到的问题就是这些,如果有不正确的地方欢迎讨论并指正,转载希望尊重原创,下一期应该会出大模型的几种微调方式。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

<think>好的,我现在需要帮助用户了解如何以通俗易懂的方式部署DeepSeek大型语言模型,并提供带有图文标识的指导。用户可能对技术细节不太熟悉,所以步骤需要简单明了,避免使用过于专业的术语。 首先,我需要回顾用户提供的引用内容。引用[1]提到DeepSeek是开源的,可以通过本地部署在终端使用,用户希望知道具体操作。引用[2]和[3]涉及安装ollama、模型部署以及图形界面安装,尤其是Docker和Open WebUI。引用[4]则提到了自定义模型和微调的高级步骤,但用户可能需要基础教程,所以暂时不需要深入这些部分。 接下来,我需要整理部署的基本步骤。根据引用中的信息,部署流程大致分为安装Ollama、下载DeepSeek模型、安装图形界面(如Open WebUI)。用户需要图文说明,所以每个步骤应配以示例命令和可能的截图位置提示,但由于是文本形式,只能用文字描述图片内容。 需要注意用户可能使用的操作系统,但引用中没有具体说明,可能以Linux为例,或者通用步骤。例如,安装Ollama可能需要不同的命令,但引用[3]提到使用安装ollama,可能使用curl命令下载安装脚本。然后下载模型,如ollama run deepseek,这可能需要解释模型名称是否正确,或者是否有特定本。 图形界面部分,用户可能希望有一个友好的UI,而不是黑框框。引用[3]提到了Docker安装Open WebUI,所以需要指导用户安装Docker,拉取镜像,并运行容器。这些步骤需要分步说明,确保用户能跟上。 用户可能需要验证安装是否成功,比如在终端运行模型测试,或者访问本地端口查看WebUI。需要提醒用户注意可能的错误,如端口冲突或依赖缺失,但保持教程简洁,可能不深入排错。 最后,生成相关问题,帮助用户扩展知识,比如性能优化、模型微调等,但根据用户问题,应集中在部署步骤上,相关问题可以涉及这些方面。 需要确保所有技术术语有简单解释,例如Ollama是什么,Docker的作用,以及如何通过命令行操作。同时,保持段落简短,使用列表和代码块突出显示命令,让结构清晰。 总结步骤: 1. 安装Ollama:使用curl命令下载安装脚本,执行安装。 2. 下载DeepSeek模型:通过ollama run命令获取模型。 3. 安装Docker:确保Docker已安装,拉取Open WebUI镜像。 4. 运行Open WebUI容器:使用docker命令启动服务。 5. 访问Web界面:通过浏览器访问本地端口,使用模型。 需要检查每个步骤的命令是否正确,例如引用中的ollama run deepseek是否有效,可能需要确认模型在Ollama库中的确切名称,如果用户提到的是deepseek-R1,可能需要调整命令。此外,安装Docker的步骤是否需要详细说明,比如在Ubuntu上使用apt安装,或者提供官方安装链接。 可能的问题点:用户可能不知道如何打开终端,或者权限问题,比如需要sudo运行命令,这些需要提示。图形界面安装部分,如果用户不熟悉Docker,可能需要简要说明Docker的基本概念,但保持简洁。 最终,确保回答结构清晰,分步骤说明,每个步骤有代码示例和解释,并在最后生成相关问题,如优化部署、使用场景、性能提升等。</think>以下是为您整理的DeepSeek大模型本地部署图文教程(零基础友好): ### 一、环境准备 1. **安装Ollama框架** 打开终端执行(Windows需先安装[WSL2](https://aka.ms/wsl2)): ```bash curl -fsSL https://ollama.com/install.sh | sh ``` ![安装Ollama示意图:终端显示安装进度条](https://via.placeholder.com/600x200?text=Ollama+安装界面示例) 2. **验证安装** 执行命令应显示本号: ```bash ollama --version # 预期输出:ollama version 0.1.xx ``` ### 二、模型部署 ```bash # 下载DeepSeek模型(约需10-30分钟,具体取决于网络) ollama run deepseek ``` ![模型下载示意图:终端显示下载进度](https://via.placeholder.com/600x200?text=模型下载进度条示例) ### 三、图形界面部署 1. **安装Docker** ```bash # Ubuntu示例 sudo apt-get install docker.io # 其他系统参考:https://docs.docker.com/engine/install/ ``` 2. **启动Open WebUI** ```bash docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main ``` ![Docker运行示意图:终端显示容器启动状态](https://via.placeholder.com/600x200?text=Docker容器运行示例) 3. **访问界面** 浏览器打开:`http://localhost:3000` ![Web界面示意图:类似ChatGPT的对话界面](https://via.placeholder.com/600x400?text=DeepSeek+Web操作界面示例) ### 四、基础验证 ```python # 测试模型响应 import ollama response = ollama.chat(model='deepseek', messages=[{'role': 'user', 'content': '你好'}]) print(response['message']['content']) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值