
机器学习
ML瞎捣鼓
legendaryhaha
legendaryhaha的博客
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习之支持向量机
SVM背景含义核函数线性核函数(Linear Kernel)多项式核函数(Polynomial Kernel)径向基核函数(Radial Basis Function Kernel)Sigmoid核背景支持向量机(Support Vector Machine,SVM)属于有监督学习模型,主要用于解决数据分类问题。通常SVM用于二元分类问题,对于多元分类可将其分解为多个二元分类问题,再进行分类...原创 2019-05-27 16:57:40 · 2909 阅读 · 0 评论 -
神经网络中的一些常见概念
神经网络相关概念激活函数损失函数学习率过拟合模型训练中的问题激活函数损失函数学习率过拟合模型训练中的问题原创 2019-05-27 11:23:12 · 2434 阅读 · 1 评论 -
机器学习之神经网络
神经网络神经网络介绍梯度下降算法前馈神经网络感知器BP神经网络反馈神经网络自组织神经网络神经网络介绍传统神经网络结构比较简单,训练时随机初始化输入参数,并开启循环计算输出结果,与实际结果进行比较从而得到损失函数,并更新变量使损失函数结果值极小,当达到误差阈值时即可停止循环。神经网络的训练目的是希望能够学习到一个模型,实现输出一个期望的目标值。学习的方式是在外界输入样本的刺激下不断改变网络的连...原创 2019-05-27 10:55:04 · 3459 阅读 · 0 评论 -
机器学习之推荐系统模型
推荐系统模型基于内容的推荐基于协同过滤的推荐算法基于用户的协同过滤算法基于物品的协同过滤算法基于隐语义模型算法基于关联规则的推荐Apriori算法FP-增长算法[基于物品的协通过滤算法举的例子参考自这位博主,图也取自于他。该算法参考这位博主的文章]推荐系统首先通过分析用户行为数据,建立用户偏好模型。然后使用用户兴趣匹配物品的特征信息,再经过推荐算法进行筛选过滤,找到用户可能感兴趣的推荐对象,...原创 2019-05-26 16:24:49 · 10619 阅读 · 0 评论 -
机器学习之推荐系统基础
推荐系统基础背景相似度皮尔逊相关系数(Pearson Correlation Coefficient)很早就对推荐感兴趣了,特别是用了网易云音乐后(不是打广告),对它推荐的歌曲非常适合我的口味(平时听歌广泛,不拘于几首好听的),于是乎,更加对推荐增添了些许兴趣。但之前看的有关推荐内容都很杂,这次把它稍微整理一下。背景推荐系统是一种帮助用户快速发现有用信息的工具,通过分析用户的历史行为,研...原创 2019-05-25 21:44:28 · 600 阅读 · 0 评论 -
机器学习之聚类常用方法
机器学习之聚类基于划分的聚类K均值算法k均值++算法注意k-medoids算法k-prototype算法基于层次的聚类BIRCH算法CURE算法基于密度聚类DBSCAN算法[参考百度百科]DENCLUE算法基于网格的聚类(STING、CLIQUE )基于模型的聚类基于概率模型的聚类基于神经网络模型的聚类基于划分的聚类通过将对象划分为互斥的簇进行聚类, 每个对象属于且仅属于一个簇,划分结果旨在使...原创 2019-05-25 11:52:38 · 4771 阅读 · 2 评论 -
机器学习之聚类分析度量
机器学习之聚类聚类分析的度量外部指标内部指标聚类分析概念:将未标记的样本自动划分成多个类簇聚类属于无监督的学习方法,它和分类容易搞混,聚类是通过相似的特征,将为标记的各个元素聚在一起,而分类是想实现见山是山、见海便是海的效果。聚类分析的度量聚类分析的度量指标用于对聚类结果进行评判,分为内部指标和外部指标两大类,其中外部指标指用事先指定的聚类模型作为参考来评判聚类结果的好坏,而内部指标是...原创 2019-05-24 21:03:44 · 2897 阅读 · 0 评论 -
决策树和分类算法
机器学习非集成学习的算法ID3算法信息熵信息增益完整的例子(来自赵卫东的机器学习一书)算法思想(类似贪婪算法)集成学习的算法分类算法是利用训练样本集获得分类函数即分类模型(分类器),从而实现将数据集中的样本划分到各个类中。分类模型通过学习训练样本中属性集与类别之间的潜在关系,并以此为依据对新样本属于哪一类进行预测。——分类树算法的含义一颗决策树由决策结点、分支和叶子结点组成,决策结点表示在样...原创 2019-05-21 16:22:28 · 2075 阅读 · 0 评论 -
机器学习入坑篇
机器学习从入门到入坑三者关系机器学习的分类机器学习的任务逻辑回归和线性回归的区别读复旦大学赵卫东博士的机器学习一书有感。经常听很多人开口闭口就是什么机器学习、人工智能啥的,这次系统看了一些资料后,算有点小感悟吧~三者关系机器学习的分类机器学习大致分为三类,监督学习、非监督学习、强化学习。这三者的解释及用途如下:监督学习:从有标记的训练数据中学习一个模型,然后根据这个模型对未知数据进...原创 2019-05-21 09:54:58 · 508 阅读 · 1 评论