图神经网络(GNN/GCN)

GNN(Graph Neural Network)

概念

图神经网络是一类专门设计用于处理图结构数据的神经网络。目标是学习图中节点或边的表示(representations),这些表示能够捕捉图中的拓扑结构以及节点或边的属性信息。这些学习到的表示可以进一步用于各种图相关的任务,如节点分类、图分类、链接预测、推荐系统等。

基本思想

通过迭代地聚合邻居节点的信息来更新节点的表示。简单来说就是我不仅要学习结点本身的特征,我周围的结点跟我有关系,所以我可以适当的学习一点他们的特征,然后与我自己的特征进行聚合得到最终的特征来训练模型。举例来说,我只有三个朋友,而且他们都很有钱,故可以猜测我也很有钱。

聚合

聚合就是通过下面提出的式子为每一个结点计算他们的信息,这个计算利用了他的邻居们的信息和自己的信息。也就是说利用了所有相关的信息,把他们通过某种方式计算出一个最终的属于自己的信息。

图1
在这里插入图片描述

这是一种简单的写法,其中

  • N N N:为邻居们的信息
    • a 、 b 、 c a、b、c a<
### GNNGCN的区别和联系 图神经网络(Graph Neural Networks, GNN)是一个更广泛的概念,涵盖了多种用于处理图结构数据的模型。GNN的整体框架通过信息传递机制来学习节点或边的表示[^2]。在这个框架下,不同的模型被提出以适应特定的任务需求。其中,图卷积网络(Graph Convolutional Networks, GCN)是GNN中的一种具体实现形式,它最早由Kipf等人提出,并通过局部邻居节点的信息聚合来学习节点表示[^1]。 #### 区别 - **定义范围**:GNN是一个整体框架,包含多种具体的模型,如GCN、GraphSAGE、GAT等。而GCNGNN框架下的一个特定模型[^3]。 - **信息传递方式**:在GNN中,信息传递的方式可以多样化,例如基于消息传递神经网络(MPNN)、注意力机制(如GAT)等。而GCN主要采用空域卷积的方式,直接将卷积操作定义在每个节点的连接关系上[^4]。 - **适用场景**:虽然GNN能够适应各种图相关的任务,但GCN特别适用于节点分类任务,其设计初衷是为了简化谱域上的图卷积操作[^1]。 #### 联系 - **共同目标**:无论是GNN还是GCN,它们的目标都是学习图中节点或边的表示,这些表示能够捕捉图的拓扑结构以及节点或边的属性信息[^3]。 - **信息传递机制**:GCN作为GNN的一种实现,继承了GNN的核心思想——通过聚合邻居节点的信息来更新当前节点的特征向量[^2]。 - **任务应用**:两者都可以应用于各种图相关的任务,如节点分类、图分类、链接预测、推荐系统等[^3]。 ```python # 示例代码:简单的GCN实现 import torch import torch.nn as nn import torch.nn.functional as F class GCNLayer(nn.Module): def __init__(self, input_dim, output_dim): super(GCNLayer, self).__init__() self.linear = nn.Linear(input_dim, output_dim) def forward(self, x, adj): # 进行图卷积操作 support = self.linear(x) output = torch.matmul(adj, support) return output # 初始化层 gcn_layer = GCNLayer(input_dim=16, output_dim=8) x = torch.randn(5, 16) # 假设有5个节点,每个节点有16维特征 adj = torch.tensor([[0, 1, 0, 0, 1], [1, 0, 1, 0, 0], [0, 1, 0, 1, 0], [0, 0, 1, 0, 1], [1, 0, 0, 1, 0]], dtype=torch.float) # 邻接矩阵 output = gcn_layer(x, adj) print(output) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值