文章目录
GNN(Graph Neural Network)
概念
图神经网络是一类专门设计用于处理图结构数据的神经网络。目标是学习图中节点或边的表示
(representations),这些表示能够捕捉图中的拓扑结构以及节点或边的属性信息。这些学习到的表示可以进一步用于各种图相关的任务
,如节点分类、图分类、链接预测、推荐系统等。
基本思想
通过迭代地聚合邻居节点的信息来更新节点的表示
。简单来说就是我不仅要学习结点本身的特征,我周围的结点跟我有关系,所以我可以适当的学习一点他们的特征,然后与我自己的特征进行聚合得到最终的特征来训练模型。举例来说,我只有三个朋友,而且他们都很有钱,故可以猜测我也很有钱。
聚合
聚合就是通过下面提出的式子为每一个结点计算他们的信息,这个计算利用了他的邻居们的信息和自己的信息
。也就是说利用了所有相关的信息,把他们通过某种方式计算出一个最终的属于自己的信息。
图1
这是一种简单的写法,其中
- N N N:为邻居们的信息
- a 、 b 、 c a、b、c a<