向量库Weaviate的搭建和使用

为什么选择Weaviate

  1. 开源
  2. 行业TOP 3
  3. 支持混合检索

搭建步骤

  1. 安装docker 这里就不赘述docker的安装方法了
  2. 运行容器
    docker run -d --name wea -p 8080:8080 -p 50051:50051 cr.weaviate.io/semitechnologies/weaviate:1.25.0
    注意前面的ip是宿主机ip 后面的是docker容器ip
  3. 查询运行状态
    docker ps
    在这里插入图片描述
  4. 使用编排的方式创建容器
    创建 docker-compose.yml
version: '3.4'
services:
  weaviate:
    command:
    - --host
    - 0.0.0.0
    - --port
    - '8080'
    - --scheme
    - http
    image: cr.weaviate.io/semitechnologies/weaviate:1.25.0
    ports:
    - 8081:8080
    - 8082:50051
    volumes:
    - /root/wea/data
### 如何逐步设置 Weaviate 向量数据库 #### 安装依赖项 为了启动运行 Weaviate 数据库,需安装必要的软件包。通常情况下,这涉及 Docker 或者直接通过 Python 的 pip 工具来完成。 对于基于 Docker 的环境配置: ```bash docker pull semitechnologies/weaviate:latest ``` 如果选择使用 Python SDK,则可以执行如下命令: ```bash pip install weaviate-client ``` #### 初始化 Weaviate 实例 一旦所有必需组件都已就绪,可以通过定义 JSON 配置文件或者利用官方提供的默认参数快速初始化一个新的 Weaviate 节点实例[^1]。 当采用 Docker 方式部署时,可参照以下指令: ```bash docker run -p 8080:8080 \ --env AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED="true" \ --env PERSISTENCE_DATA_PATH="./data" \ semitechnologies/weaviate:latest ``` 上述命令会暴露端口 `8080` 并允许匿名访问权限以便简化初次接触者的上手难度;同时指定了持久化存储路径用于保存索引数据。 #### 创建模式(Schema) Weaviate 使用类图模型(class-based schema) 来描述对象及其属性之间的关系结构。创建自定义 class 可以为后续的数据导入操作奠定基础框架。 下面是一个简单的例子展示如何定义一个名为 “Article”的 Class: ```json { "classes": [ { "class": "Article", "description": "A written piece published on a website.", "properties": [ {"name": "title", "dataType": ["text"], "description": "The title of the article."}, {"name": "content", "dataType": ["text"], "description": "Main content body."} ] } ] } ``` 此部分工作可通过 REST API 请求或借助于客户端库实现自动化脚本处理[^2]。 #### 导入数据 有了预先设定好的 Schema 后就可以着手准备实际的内容填充了。支持多种格式如 CSV、JSON 等作为输入源,并且能够批量加载大量记录提高效率。 假设已经准备好了一个包含文章信息的 JSON 文件 (`articles.json`) ,那么可以直接调用相应的接口上传至指定类别下: ```python import json import requests with open('articles.json') as f: articles = json.load(f) for article in articles['data']: response = requests.post( url='http://localhost:8080/v1/objects', headers={'Content-Type': 'application/json'}, data=json.dumps({ "class": "Article", "properties": article, }) ) print(response.status_code, response.text) ``` 这段代码片段展示了怎样逐条读取本地文件中的每篇文章并通过 HTTP POST 方法提交给远程服务器进行解析入库[^3]。 #### 查询与检索 最后一步就是学习掌握查询语句编写技巧从而充分利用向量化搜索引擎的强大功能特性。Weaviate 支持 GraphQL Restful APIs 形式的请求方式获取所需的结果集。 例如要查找标题中含有特定关键词的文章列表,可以用类似这样的语法表达需求: ```graphql query GetArticles($term: String!) { Explore ( nearText: {concepts: [$term]} ) { Article { title _additional {certainty} } } } ``` 以上即为关于 How to Set Up Weaviate Vector Database Step-by-Step Guide 的全部要点介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值