- 博客(41)
- 收藏
- 关注
原创 基于GEE与哨兵2号的土地覆盖分类方法及实现
本文介绍了基于GEE平台和哨兵2号数据的土地覆盖分类方法。通过GEE的海量数据处理能力,结合多光谱特征和机器分类算法(随机森林、SVM等)实现高效分类。详细阐述了技术流程,包括影像合成、特征构建、样本采集、分类器训练及精度验证等关键步骤,并提供了完整的代码实现。该方法具有免数据下载、自动化处理等优势,能够快速生成高精度分类结果,为地表变化监测提供技术支持。
2025-07-23 20:20:05
290
原创 基于GEE的上海城市热岛效应遥感监测与分
基于Landsat 8遥感数据和Google Earth Engine平台,本研究建立了城市热岛效应自动化分析流程,以上海市为例开展热岛空间特征研究。通过地表温度反演、热岛强度分级和相关性分析,揭示了城市热岛的空间分布规律及其与植被覆盖的关系。结果表明,该方法实现了从数据预处理到结果输出的全流程自动化,为城市生态规划提供了可靠的技术支持。
2025-07-23 13:56:11
487
原创 遥感数据(GEE平台)介绍及简单可视化(一)|开篇:欧洲土地覆盖与城市扩张时序分析
本系列文章介绍Google Earth Engine(GEE)平台在土地利用/覆盖(LULC)研究中的应用,重点解析Copernicus CORINE Land Cover数据集。该数据集包含1990-2018年欧洲39国的5期100米分辨率数据,共44个土地覆盖类别。文章以意大利为例,演示了GEE加载、可视化、多期城市用地提取及面积统计的完整流程,包括代码实现和时空变化分析。该方法为城市扩张研究提供了高效工具,后续将介绍更多全球LULC数据应用。
2025-07-23 12:52:55
470
原创 基于GEE与K-Means聚类的青岛市城市空间结构分类:从数据到地图的完整方案
本研究基于Google Earth Engine平台,利用Landsat 8遥感数据和K-Means聚类算法,实现了青岛市空间结构的自动化分类。通过NDVI、NDBI等4类遥感指数特征提取和数据标准化,将城市划分为6类空间结构(如高密度建成区、高植被覆盖区等)。该方法具有高效性(全程代码自动化处理)、客观性(基于光谱特征)和可移植性(适用于其他城市)等优势,为城市规划、生态保护等提供科学依据。研究还展示了分类结果的空间分布特征和面积统计方法,为城市空间结构评估提供了量化手段。
2025-07-23 12:43:52
490
原创 基于GEE的石漠化等级监测:从数据处理到面积统计全流程
本文基于Google Earth Engine平台提出喀斯特地区石漠化遥感监测方法,通过"植被-土壤水分"协同反演实现自动化评估。技术流程包括:1)Landsat数据预处理与波段匹配;2)计算NDVI和NDRI指数,提取植被覆盖度与相对湿度;3)结合双指标阈值划分五级石漠化;4)自动统计面积并输出结果。该方法以2000和2005年天水地区为例,展示了从数据获取到分级统计的完整解决方案,具有高效、可重复的优势,为生态修复提供可靠数据支撑。
2025-07-20 17:35:35
784
原创 基于GEE与哨兵2号的土地覆盖分类方法及实现
本文基于哨兵2号遥感数据,介绍利用GEE实现土地覆盖分类的完整流程,包括数据预处理、特征构建、分类器训练及精度验证等关键环节。
2025-07-19 17:22:10
1026
原创 用GEE追踪青海湖结冰消融全过程:从代码到可视化全解析
本文通过Google Earth Engine(GEE)平台,利用Landsat 8/9遥感数据监测青海湖2022-2023年度结冰消融全过程。研究将青海湖冰冻周期分为5个阶段(未结冰期、开始结冰、完全结冰、开始消融和完全消融),通过云掩膜、波段合成和月度影像中值处理等技术手段,实现了30米分辨率的高精度监测。文章提供了完整GEE代码,包括研究区域定义、云掩膜函数、波段重命名和可视化参数设置等关键步骤,特别解决了数据缺失时的处理方法。
2025-07-18 13:14:06
1261
原创 探秘 MODIS/006/MODOCGA:每日全球1km海洋反射率数据的应用与价值
摘要:NASA提供的MODIS/006/MODOCGA数据集(2000-2023年每日全球1km分辨率海洋反射率数据)具有广泛的应用价值。其覆盖可见光至近红外的9个波段(405-877nm),支持植被监测、水体分析等研究,并通过16种质量控制码确保数据可靠性。该数据集凭借23年连续观测、全球覆盖和开放获取优势,适用于生态评估、农业监测和气候变化研究。用户可通过Google Earth Engine平台快速调用,并生成假彩色合成图像进行可视化分析。
2025-07-18 01:12:45
886
原创 Landsat 9 数据在 GEE 中的应用:Surface Reflectance、Top of Atmosphere 与 Raw Images
Landsat 9 作为当前地表观测的主力卫星,其数据在 Google Earth Engine(GEE)平台上覆盖了从基础可视化到定量分析的全场景。但面对 Surface Reflectance(地表反射率)、Top of Atmosphere(大气顶层反射率)、Raw Images(原始图像)三类数据,该如何选择?不同场景该匹配哪种处理方式?
2025-07-18 00:56:41
739
原创 基于Sentinel-3 OLCI数据:北大西洋叶绿素浓度提取与可视化全流程
本文基于Sentinel-3 OLCI卫星数据,展示了利用Google Earth Engine平台提取北大西洋叶绿素浓度的方法。叶绿素作为浮游植物分布的"生态晴雨表",对渔业资源监测和海洋生态研究具有重要意义。文章详细解析了数据处理流程:从研究区域定义、OLCI数据加载(300米空间分辨率,2天时间分辨率),到基于OC4算法的叶绿素浓度计算(利用Oa06/Oa08波段比值),最后通过可视化呈现2023年夏季北大西洋叶绿素分布。
2025-07-17 15:54:39
706
原创 基于Google Earth Engine(GEE)提取某区域地表温度(LST)的完整流程
本文介绍利用Google Earth Engine平台基于Landsat 7数据提取地表温度的方法。研究选取特定站点(100.1378°E,37.3306°N)和2019年四个目标日期,通过QA_PIXEL波段进行云掩膜处理,采用Jiménez-Muñoz单通道算法计算地表温度。对于无直接观测的日期,通过时间序列插值获取数据。关键步骤包括:1)基础参数设置与研究区边界定义;2)云掩膜处理;3)基于物理校正的温度计算;4)构建全年时间序列
2025-07-17 12:15:00
637
原创 使用Google Earth Engine计算1994-2000年Landsat 5 TM数据的Forel-Ule指数(FUI)
本文介绍了基于Landsat 5 TM数据计算Forel-Ule指数(FUI)的方法。FUI是一种21级水体颜色分类系统,可反映水质状况。研究使用1994-2000年Landsat 5 TM表面反射率数据,通过预处理步骤去除云阴影和饱和像元,并转换为实际反射率。核心算法包括:1)利用NDWI提取水体;2)计算三刺激值X、Y、Z;3)转换色度坐标并计算色调角度;4)应用多项式校正;5)根据角度范围分配1-21级FUI值。该方法可实现大范围水体颜色监测,为水质评估提供有效手段。
2025-07-16 15:24:34
879
原创 基于Sentinel-1雷达数据的洪水动态监测(附完整GEE代码)
洪水是最常见的自然灾害之一,快速、准确地监测洪水淹没范围及动态变化,对灾情评估和救援决策至关重要。本文将介绍如何利用Google Earth Engine(GEE)平台,基于Sentinel-1合成孔径雷达(SAR)数据,实现洪水的自动化监测与分析。
2025-07-15 20:31:52
903
原创 Google Earth Engine中Landsat 8云处理核心代码解析
本文详细介绍了在Google Earth Engine平台上处理Landsat 8影像云覆盖问题的核心方法。
2025-06-23 03:07:40
868
原创 Google Earth Engine 中地形晕渲图(Hillshade)的实现与应用
在地理信息科学和遥感领域,地形晕渲图(Hillshade)是一种非常有用的可视化工具,它能够通过模拟光照效果,突出显示地形的起伏和地貌特征,帮助我们更直观地理解地形数据。Google Earth Engine(GEE)作为一个强大的地理空间数据分析平台,提供了丰富的工具和方法来处理和可视化地形数据。本文将详细介绍如何在 GEE 中利用 SRTM 数字高程模型(DEM)数据计算并可视化不同太阳方位角下的地形晕渲图。
2025-04-28 23:45:41
1055
原创 利用 Google Earth Engine 探索江宁区 2010 - 2020 年 EVI 时空变化
增强型植被指数(Enhanced Vegetation Index,EVI)是一种用于量化植被生长状态和覆盖程度的重要指标,它在监测植被动态、生态环境评估以及气候变化研究等领域发挥着关键作用。Google Earth Engine(GEE)作为一个强大的地理空间分析平台,提供了丰富的遥感数据资源和高效的数据处理能力,能够帮助我们轻松地对长时间序列的 EVI 数据进行分析和可视化。本文将详细介绍如何使用 GEE 对南京市江宁区 2010 - 2020 年的 EVI 数据进行处理和分析,以揭示该地区植被在这十年
2025-04-28 23:22:38
1647
原创 Google Earth Engine 实战:江宁区 2010-2020 年叶面积指数(LAI)时空动态分析
叶面积指数(Leaf Area Index, LAI)是衡量植被生长状态和生态系统生产力的关键指标,在农业监测、生态环境评估等领域具有重要应用价值。Google Earth Engine(GEE)凭借其强大的遥感数据处理能力,为分析长时间序列的 LAI 变化提供了高效解决方案。本文以南京市江宁区为例,详细介绍如何利用 GEE 对 MODIS LAI 数据进行处理,实现 2010 - 2020 年 LAI 的时空动态可视化与对比分析。
2025-04-27 17:36:10
755
原创 图神经网络与 Transformer 多模型对比实战:从数据处理到结果分析全流程
在机器学习与深度学习领域,模型的选择与对比是优化算法性能的关键环节。本文将基于 Python 和 PyTorch 框架,结合torch_geometric库,详细展示图卷积网络(GCN)、图注意力网络(GAT)、视觉 Transformer(ViT)以及混合模型(Hybrid)的完整实现过程。从数据加载、模型定义、训练评估到结果保存,每一步都提供可复用的代码,适合算法研究、学术论文写作和工程实践参考。数据参考(注意:直接用链接中的数据替换):https://download.csdn.net/dow
2025-04-27 15:33:56
938
原创 Python 数据可视化全场景实现(二):三维数据可视化实战
在数据分析与学术研究中,二维图表往往难以全面展示复杂数据的空间关系和分布特征。而三维可视化能够更直观地呈现数据的多维度信息,无论是展示函数曲面、对比分组数据,还是分析空间分布,三维图表都能发挥独特作用。本文将基于 Python 的matplotlib库,结合mpl_toolkits.mplot3d模块,通过五个经典案例,详细讲解三维数据可视化的实现方法,并提供完整可复用的代码。
2025-04-27 01:23:46
975
原创 Python 数据可视化全场景实现(一)
在学术研究与数据分析中,数据可视化是呈现研究成果、挖掘数据规律的重要手段。本文将通过 Python 的matplotlib和seaborn库,结合实际案例,详细介绍时间序列趋势、分组对比、数据分布、相关矩阵及多变量关系等多种场景下的数据可视化方法,并提供完整可复用代码。无论是论文撰写、报告展示,还是数据探索,都能找到实用的解决方案!大家喜欢就关注一下,代码可以直接运行!
2025-04-27 01:11:19
1021
原创 基于 SCCAN 模型的序列数据分类实战:从一维卷积到结果分析
在序列数据分类任务中,一维卷积神经网络(1D-CNN)因其对局部特征的高效提取能力而被广泛应用。本文介绍一种简单高效的序列分类模型 SCCAN(Simple Convolutional Classifier for Attribute Networks),基于 PyTorch 实现完整的训练、评估与结果保存流程,适用于时间序列、特征序列等数据的多分类任务。对应代码和数据链接:https://download.csdn.net/download/lestatlu/90691726请大家多多关注
2025-04-26 00:50:20
1073
原创 给大家推荐一个获取矢量资源的网站,Natural Earth Data:解决矢量图资源难题的宝藏网站
是一个致力于提供免费、可下载的矢量和栅格地图数据的专业平台。该项目由地理信息爱好者和专业人士共同维护,旨在为全球用户提供高质量、多尺度的地理空间数据。其数据覆盖范围涵盖全球各大洲、国家和地区,包含地形、水系、交通、行政区划等多种地理要素,支持多种常用数据格式(如 SHP、GeoJSON、KML 等),并且完全遵循开源协议,用户可以自由下载、使用和分享数据,无需担心版权问题。网站首页界面直观清晰,方便用户快速定位所需数据。
2025-04-26 00:30:06
1726
原创 基于图卷积网络(GCN)的分类任务实战:从数据加载到结果分析
图神经网络(GNN)在处理具有图结构的数据时表现出色,其中图卷积网络(GCN)是最经典的模型之一。本文将结合实际代码,详细介绍如何使用 GCN 进行分类任务,涵盖数据加载、图结构构建、模型定义、训练评估及结果保存全流程,适合对图学习感兴趣的科研人员和开发者参考。 资源链接如下:https://download.csdn.net/download/lestatlu/90690594请大家关注支持一下!
2025-04-25 17:09:15
1034
原创 基于python的高光谱数据加载与可视化教程
本文基于 Python 代码介绍高光谱数据的加载与可视化,先导入必要库,loadData函数根据数据集名称从指定文件夹加载.mat或.h5格式的高光谱数据及对应标签,visualize_data_and_gt函数检查数据维度、选择波段进行假彩色合成并归一化,绘制并展示假彩色影像和真实标签图,主程序调用函数加载 “DC” 数据集并可视化,选择第 30、50、70 波段合成,可按需扩展函数及选择不同数据集和波段组合分析数据特征。
2025-04-25 00:23:53
667
1
原创 基于 EfficientFormer 的模型训练与评估:从数据处理到结果保存
这篇博客介绍了基于 EfficientFormer 的模型训练与评估全流程,从选择计算设备,到加载预处理数据(含构建图结构),接着定义模型类,其含轻量化 Patch Embedding、高效 Transformer 编码层和分类头。通过训练评估函数进行模型训练与多指标评估,主流程中训练多个模型并保存结果,最后统计评估指标并保存至 Excel,展示完整实践过程。
2025-04-25 00:03:36
1055
原创 Google Earth Engine 基础操作教程(一):以江宁区 Landsat 8 影像处理为例
今天带学生做实验,突然发现很多学生基础操作不太会,所以准备写几篇基础教程,大家感兴趣可以关注学习一下,因为都是很简单的内容,所以应该会更新很快。本文将以南京市江宁区为例,详细介绍在 GEE 中对 Landsat 8 影像进行的一些基础操作,包括影像加载、可视化、裁剪、掩膜、均值计算以及波段运算等,并将处理后的影像导出。
2025-04-24 15:02:40
968
原创 基于 Google Earth Engine (GEE) 的区域植被景观指标计算与分析
本文将详细介绍如何使用 GEE 对南京江宁区(以特定多边形区域为例)2010 - 2015 年的植被景观进行分析,计算一系列景观指标,并对结果进行可视化和导出。感兴趣的话请大家关注,后面会定期更新
2025-04-24 02:21:57
349
原创 基于 Google Earth Engine 的地表温度计算与对比
本文通过 Google Earth Engine 平台,使用 Landsat 8 Level 2 数据,通过两种不同的方法计算了地表温度,并对结果进行了可视化展示。
2025-04-24 01:23:53
731
原创 Google Earth Engine 实现溧水区 Landsat 8 影像 NDVI 计算及精准采样分析
true此代码使用函数明确了溧水区的地理范围。通过指定经纬度坐标以及EPSG:4326坐标系(即 WGS84 地理坐标系),为后续的影像筛选和分析划定了空间边界。]);这部分代码创建了一个包含两个手动采样点的。每个采样点由ee.Feature和定义,指定了具体的经纬度坐标。手动设置采样点是为了精准获取特定位置的 NDVI 数据,这些点可以代表溧水区内不同的地理特征或研究重点区域,为后续的数据分析提供关键样本。
2025-04-24 00:29:06
776
原创 基于 Google Earth Engine 的南京江宁区土地利用分类(K-Means 聚类)
其实利用GEE可以做的内容太多了,很多内容换一个区域,换一个时间段就是一篇本科毕业论文(设计),甚至拓展一下硕士也不是不行。本文将详细介绍如何使用 GEE 对南京江宁区的 Landsat 8 地表反射率数据进行 K-Means 聚类分析,实现土地利用分类,并将结果可视化和导出。(后续有机会再给大家详细说一下如何完整的进行毕业论文的大纲和设计,甚至完成一篇十分简单的毕业论文。)
2025-04-23 23:15:28
562
原创 基于 Google Earth Engine 的北京市植被 NDVI 时间序列分析
本文将详细介绍如何使用 GEE 对北京市的植被 NDVI 进行时间序列分析,并生成可视化图表和导出数据。
2025-04-23 00:09:56
432
原创 基于 Google Earth Engine 的北京市中心区域地表温度反演
有些话说在前面,我看到现在有很多类似的GEE资源是收费的,但是实际上这些内容都很简单,大家可以自己试一试,没必要为这些简单的内容付费。如果有一些更为复杂的部分或者比较完整费时费力的内容项目,再去付费学习更为合理。本文将详细介绍如何使用 GEE 对北京市中心区域的地表温度进行反演,并将结果导出保存。
2025-04-22 21:58:47
1159
原创 基于 Google Earth Engine 的汛期洪水区域监测与可视化
文将详细介绍如何使用 GEE 对特定区域在汛期的洪水情况进行监测,并将结果可视化展示。
2025-04-22 16:49:25
299
原创 基于 Google Earth Engine (GEE) 的土地利用变化监测
土地利用变化是全球环境变化的重要组成部分,对生态系统、气候和人类社会产生深远影响。利用遥感技术可以快速、准确地获取土地利用信息,监测其变化情况。本文将详细介绍如何使用 GEE 对特定区域的 Landsat 影像进行处理,实现土地利用分类和(动态)变化监测。
2025-04-22 13:59:26
1006
原创 Google Earth Engine (GEE) 实现南京市水体提取:2018-2022 年时间序列分析
本文将详细介绍如何使用 GEE 对南京市 2018 年至 2022 年的 Sentinel-2 卫星数据进行处理,实现水体的提取和时间序列分析。(大家可自行修改代码中的经纬度、时间及NDWI指数,进行自己的研究)
2025-04-22 12:36:45
534
原创 遥感影像处理:基于 Python 的植被指数提取与分类教程(无监督)
在遥感影像处理领域,植被指数的提取与分类是非常重要的环节,它可以帮助我们了解地表植被的分布和生长状况。本文将详细介绍如何使用 Python 对高空间分辨率影像和低空间分辨率多光谱数据进行处理,提取归一化植被指数(NDVI)并进行无监督分类。
2025-04-22 00:50:22
615
原创 Google Earth Engine(GEE)遥感指数计算实战教程:从数据处理到批量导出
在遥感数据分析中,植被覆盖、水体识别、生态环境监测等研究常依赖于各类遥感指数的计算。Google Earth Engine(GEE)凭借其强大的云计算能力和海量遥感数据集,为快速计算和分析遥感指数提供了高效平台。本文以 Landsat 8 影像数据为例,详细介绍如何利用 GEE 完成影像预处理、常用遥感指数计算及数据导出全流程。后续还会陆续更新常用的GEE,机器学习和其他内容,简单的我就全部免费,同时,我提供的代码都是可以直接复制复现的,大家可以自己试一试。
2025-04-21 23:21:24
1348
原创 使用 Google Earth Engine(GEE)批量下载 Landsat 遥感影像教程
在遥感领域,获取大量的卫星影像数据是进行研究和分析的基础。Google Earth Engine(GEE)提供了一个强大的平台,能够方便地访问和处理海量的遥感数据。本文将详细介绍如何使用 GEE 批量下载 Landsat 8 和 Landsat 9 的遥感影像数据,以满足不同的研究需求。
2025-04-21 18:31:55
1754
原创 高光谱图像分类-基于Python的多分类器对比与结果可视化
本文是基于 Python 的高光谱图像分类实验指南,以 “dc_hx.mat” 光谱数据与 “dc_gt.mat” 标签数据为实验对象,利用 Scikit-learn 和 Matplotlib 等工具,完成高光谱图像分类实验。实验涵盖数据预处理、训练测试集划分、KNN、SVM 等多分类器训练评估及全图分类可视化四大步骤。
2025-04-21 16:14:47
409
原创 农作物数据构建和统计(基于实测数据、GEE及python)
本文通过获取遥感影像数据,结合:下载预处理后的 Sentinel-2 影像:融合矢量数据与栅格影像,生成标签矩阵:训练模型并预测农作物类别:平滑分类结果,计算面积并可视化。
2025-04-21 15:51:10
433
基于 SCCAN 模型的序列数据分类实战:从一维卷积到结果分析+对应代码和数据(数据可自行替换)
2025-04-26
基于图卷积网络(GCN)的分类任务实战:从数据加载到结果分析+对应代码数据
2025-04-25
我的博客“基于 EfficientFormer 的模型训练与评估:从数据处理到结果保存”对应代码和数据+包含划分好的训练和测试样本
2025-04-24
ICONES-HSI-Cloud.zip
2023-01-16
ICONES-HSI-Desert.7z
2023-01-16
ICONES-HSI-Wetland.zip
2023-01-16
常用高光谱分类数据集压缩文件.mat格式
2023-01-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人