图像检测系列之(15)图像分割(16)图像外插值 | ICCV2021生成对抗GAN汇总梳理...

十五、图像分割

40 Unsupervised Segmentation incorporating Shape Prior via Generative Adversarial Networks

  • 无监督的图像分割算法,由于光照变化和遮挡等干扰因素,对象边界效果并不理想。提出一种无监督的图像分解算法,获得鲁棒的内在表示。使用简单而说明性的合成示例和用于图像分割的基准数据集,证明所提出算法的有效性和鲁棒性。

db1f767fd83e51ec4845e705cb5ca334.png

41 InSeGAN: A Generative Approach to Segmenting Identical Instances in Depth Images

  • 提出 InSeGAN,无监督的 3D 生成对抗网络 (GAN),用于在深度图像中分割刚性物体实例。使用合成分析方法,设计了一种新的 GAN 架构来合成多实例深度图像,并对每个实例进行独立控制。

  • InSeGAN 接收一组代码向量(例如,随机噪声向量),每个向量编码一个对象的 3D 姿态,该对象由学习的隐式对象模板表示。生成器有两个不同的模块。第一个模块,实例特征生成器,使用每个编码姿势将隐式模板转换为每个对象实例的特征图表示。第二个模块,深度图像渲染器,聚合第一个模块输出的所有单实例特征图并生成多实例深度图像。鉴别器将生成的多实例深度图像与真实深度图像的分布区分开来。为进行实例分割,提出一个实例姿势编码器,它学习接收生成的深度图像并为所有对象实例重现姿势代码向量。

  • 为评估,引入了一个新的合成数据集“Insta-10”,它由 100,000 张深度图像组成,每个图像有 5 个来自 10 个类别的对象实例。在 Insta10 以及真实世界嘈杂深度图像上的实验表明,InSeGAN 实现了最先进的性能。

3b36fdca099ed5be8ff3b011b7442431.png

十六、图像外插值-图像延展-外推

42 SemIE: Semantically-aware Image Extrapolation

  • 提出一种语义感知的新范式来执行图像外修复(image extrapolation),从而可以添加新的对象实例。此前方法局限于只能扩展图像中已存在的对象。但所提出的方法不仅关注(i)扩展已经存在的对象,还关注(ii)基于上下文在扩展区域中添加新对象。

  • 对于给定的图像,首先使用语义分割方法获得对象分割图;分割图被输入网络以计算外推语义分割和相应的全景分割图。输入图像和获得的分割图进一步用于生成最终的图像。对 Cityscapes 和 ADE20K 卧室数据集进行实验,并表明在 FID 等指标的优越性。

  • https://semie-iccv.github.io/

猜您喜欢:

8e547d5f81d5c15d52309d1c2fc069bf.png 戳我,查看GAN的系列专辑~!

一顿午饭外卖,成为CV视觉的前沿弄潮儿!

超110篇!CVPR 2021最全GAN论文汇总梳理!

超100篇!CVPR 2020最全GAN论文梳理汇总!

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

57f3295d0d0fb33333378097363c7fc1.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值