spark history文件占用磁盘过高问题解决

我们目前用的spark版本还是2.x

spark的history事件是保存在hdfs上的,通过spark.history.fs.logDirectory指定保存的hdfs目录

使用中发现history日志文件占用磁盘还挺高的
于是写了一个脚本来定期进行清理,只保留一定时间的文件

对于spark离线任务来说,这样做是没问题的

但是对于spark streaming来说,就会导致问题
spark streaming程序是长期运行的,但是对应的文件是固定的
如果只是根据时间去删,会导致正在运行的任务,history文件被删除

好在spark history server本身就提供了日志清理的支持
直接配置一下即可:

spark.history.fs.cleaner.enabled=true
spark.history.fs.cleaner.interval=1d
spark.history.fs.cleaner.maxAge=7d

具体配置说明见:https://spark.apache.org/docs/2.1.0/monitoring.html

但是这样其实还是有个问题
那就是单个history文件会一直增长,越来越大
一来会导致磁盘占用较大,二来spark ui进行日志解析也会耗费很多资源

spark3.x开始支持history日志滚动输出,还可以对旧日志进行压缩
见文档:https://spark.apache.org/docs/latest/monitoring.html#applying-compaction-on-rolling-event-log-files
在这里插入图片描述

所以可以升级spark版本到3.x来解决这个问题

如果不想升级spark版本,对spark streaming程序进行重启,也可以作为一个临时解决方案

重启后是一个新的application,对应的history文件也变成新的,旧的文件保留7天

<think>好的,用户想了解Spark读取磁盘文件的特点,包括性能、分布式计算和数据加载方面。我需要结合用户提供的引用内容来组织回答。 首先,根据引用[1]和[2],Spark是基于内存的分布式计算框架,支持数据并行和任务并行。但读取磁盘文件时,性能可能受I/O限制,特别是数据量时。需要提到分区和并行读取,这可能引用[3]和[4]中提到的RDD分区和依赖关系。比如,窄依赖和宽依赖会影响数据处理的效率,读取磁盘文件时可能形成窄依赖,因为每个分区独立读取,不需要shuffle。同时,数据加载后的持久化策略,如引用[4]提到的RDD持久化,可能影响后续计算性能。 还要注意Spark的适用场景,如引用[2]提到的,适合需要多次操作数据集的场景。但磁盘I可能成为瓶颈,所以需要说明优化方法,比如调整分区小、压缩数据等。此外,分布式计算的原理,如DAG划分和Shuffle过程,引用[4]中的内容,需要解释读取文件后的处理流程。 可能遗漏的点:是否提到HDFS或其他存储系统的集成?用户的问题没有特别指出,但可以简要说明Spark支持多种存储系统。另外,数据本地性(data locality)在读取时的优化,可能提升性能,这也是分布式计算的关键点。 需要确保回答结构清晰,分点说明特点、性能、分布式计算和数据加载。每个部分结合引用内容,比如数据分区的引用[3][4],性能优化的引用[2]。最后生成相关问题,比如如何优化Spark读取磁盘文件的性能,或者与其他框架的对比。</think>### Spark读取磁盘文件的特点与性能分析 #### 1. **数据加载与分区特点** Spark读取磁盘文件时,**默认按块(Block)或文件小进行分区**。例如,从HDFS读取文件时,每个HDFS块(默认128MB)会被映射为一个RDD分区[^3]。这种分区策略支持并行加载数据,每个分区由不同Executor独立处理,形成**窄依赖**(无需跨节点数据传输)[^4]。例如: ```python text_file = sc.textFile("hdfs://path/to/file.txt") ``` 此时RDD的分区数与文件块数一致,每个分区的数据由单个Task处理。 #### 2. **性能影响因素** - **I/O瓶颈**:磁盘读取速度远低于内存计算速度,规模数据加载时可能成为性能瓶颈[^2]。 - **数据格式**:文本文件(如CSV)解析开销较,二进制格式(如Parquet、ORC)因列式存储和压缩特性,加载更快。 - **并行度**:分区数不足会导致资源闲置,过多则增加调度开销。可通过`sc.textFile(path, minPartitions=N)`手动调整。 #### 3. **分布式计算优化** - **数据本地性**:Spark优先将Task调度到存储数据块的节点,减少网络传输(通过`PROCESS_LOCAL`或`NODE_LOCAL`优先级实现)。 - **内存缓存**:若需重复读取同一文件,可调用`persist()`将RDD缓存至内存,避免重复磁盘I/O。 - **宽窄依赖控制**:读取文件后,若后续操作(如`map`)不涉及Shuffle,则保持窄依赖,避免性能损耗;若需`join`或`groupByKey`,则触发宽依赖和Shuffle过程。 #### 4. **适用场景与限制** - **适用场景**:单次加载后需多次迭代计算的场景(如机器学习训练),通过内存缓存弥补初始加载开销[^2]。 - **限制**:增量更新或频繁写入的场景(如实时日志追加)效率较低,因Spark更擅长批量处理静态数据。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值