8.2 聚类(Clustering) K-means算法应用

本文介绍了一种使用Python实现KMeans聚类算法的方法。该算法通过迭代更新聚类中心来划分数据集,最终得到稳定的聚类结果。文中详细展示了算法的实现过程,并提供了一个简单的示例来演示算法的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.python实现kmean 算法

import numpy as np

def kmeans(X,k,maxIt):
    numPoints,numDim=X.shape

    dataSet=np.zeros((numPoints,numDim+1))
    dataSet[:,:-1]=X
    centroids=dataSet[np.random.randint(numPoints,size=k),:]
    centroids[:,-1]=range(1,k+1)
    #print("centroids:",centroids)

    iterations=0;
    oldCentroids=None
    while not shouldStop(oldCentroids, centroids, iterations, maxIt):
        oldCentroids=np.copy(centroids)
        iterations+=1
        updateLabels(dataSet, centroids)
        centroids=getCentroids(dataSet, k)
    return dataSet
def shouldStop(oldCentroids,centroids,iterations,maxIt):
    if iterations>maxIt:
        return True
    return np.array_equal(oldCentroids, centroids)

def getLabelFromClosestCentroid(dataSetRow,centroids):
    label=centroids[0,-1]
    minDist=np.linalg.norm(dataSetRow-centroids[0,:-1])
    for i in range(1,centroids.shape[0]):
        dist=np.linalg.norm(dataSetRow-centroids[i,:-1])
        if dist<minDist:
            minDist=dist
            label=centroids[i,-1]
           # print "label:"+str(label)
    return label
def updateLabels(dataSet,centroids):
    numPoints,numDim=dataSet.shape
    for i in range(numPoints):
        dataSet[i,-1]=getLabelFromClosestCentroid(dataSet[i,:-1], centroids)

def getCentroids(dataSet,k):       
    result=np.zeros((k,dataSet.shape[1]))
    #print("resutl:",result)
    for i in range(1,k+1):
        oneCluster=dataSet[dataSet[:,-1]==i,:-1]
        #print("cluster:",oneCluster)
        result[i-1,:-1]=np.mean(oneCluster,axis=0)
        result[i-1,-1]=i
    #print("result:",result)
    return result

x1=np.array([1,1])        
x2=np.array([2,1]) 
x3=np.array([4,3]) 
x4=np.array([5,4])         
testX=np.vstack((x1,x2,x3,x4))    

result=kmeans(testX,2,10)
print('final result:',result)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值