
机器学习
UpCoderXH
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Mac python libsvm 安装&&入门
安装 下载libsvm http://www.csie.ntu.edu.tw/~cjlin/libsvm/解压,进入目录make进入python makepython目录下的*.py文件拷贝至/Library/Python/2.7/site-packages/ 目录下并将python上级目录的libsvm.so.2 拷贝至/Library/Python/2.7/ 目录下遇到的问题 在原创 2017-03-05 17:02:11 · 2816 阅读 · 1 评论 -
ubuntu Hadoop 填坑记
执行bin/hadoop的时候一直connection failed 需要将/etc/hosts 里面的ubuntu 里面的127.0.1.1 改成127.0.0.1每次重启之后都会Hadoop的web管理页面都打不开,也就是localhost:8088 和 localhost:9870 进不去,但是bin/start-all.sh 正常在Hadoop 安装目录下建立tmp目录,我这里是/usr原创 2017-03-16 17:06:33 · 1257 阅读 · 0 评论 -
XGBoost 入门使用方法
官方网址:http://xgboost.readthedocs.io/en/latest/安装步骤(ubuntu): 下载C++源码: git clone –recursive https://github.com/dmlc/xgboost多进程编译 安装: cd xgboost; make -j4安装 python 支持: cd python-packages; sudo python s原创 2017-07-16 15:31:22 · 709 阅读 · 1 评论 -
ubuntu 16.04 下cuda的安装
cuda:CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。cuDNN:CuDNN是专门针对Deep Learning框架设计的一套GPU计算加速方案,目前支持的DL原创 2017-07-19 17:26:00 · 564 阅读 · 0 评论 -
BOVW基本思想
BOVW(基于视觉特征的词袋模型)原创 2017-04-24 19:10:53 · 3963 阅读 · 2 评论 -
论文阅读-BoVW-pLSA
论文链接:Medical Image BoVW-pLSA文章大意:其实和BoVW-MI差不多,也都是在原来的词库上选择一些更具代表性的词汇。只不过将原来mutual information更换成了这里的PLSA方法,PLSA详细介绍请看下文。PLSA(probabilistic Latent Semantic Analysis)首先我们先明白一下单词的意思: word:视觉单词,代表的是通过B原创 2017-08-15 22:21:19 · 644 阅读 · 0 评论 -
机器学习-贝叶斯分类器
贝叶斯分类器学习复习总结原创 2017-12-09 17:33:32 · 293 阅读 · 0 评论 -
为什么L1正则项产生稀疏的权重,L2正则项产生相对平滑的权重
L1 和L2正则项的定义如下: L1=∑i|wi|L2=∑i(wi)2L1=∑i|wi|L2=∑i(wi)2L1 = \sum_{i} |w_i|\\L2 = \sum_{i} (w_i)^2首先我们先计算一下他们对应的导数,导入如下所示: ∂L1∂wi=1or−1→wt+1i=wti+η(−1or1)∂L2∂wi=wi→wt+1i=wti+ηwi∂L1∂wi=1or−1→wit+1...转载 2018-03-11 16:42:31 · 3273 阅读 · 2 评论 -
白化Whitening
白化操作的目的是让我们的减少冗余信息,准确来说通过白化操作我们有两个目的:每个特征之间关联性更少每个特征有相同的方差对于第一个目的来说,我们可以通过熟悉的PCA来实现。PCAPrincipal Components Analysis (PCA) 是一个用来减少特征纬度的算法,它通过减少特征的纬度来减少冗余信息。比如说,下图所示的一个特征纬度为2的点分类问题,我们可以看到数据的主要...原创 2018-12-24 19:12:12 · 1114 阅读 · 0 评论