数据结构——二分查找(python实现)

本文介绍了二分查找的概念、适用场景及Python实现。详细分析了二分查找的局限性,包括依赖顺序表结构、适用于有序数组、数据量大小的影响,并列举了四种常见的二分查找变形问题。同时,提出了如何在1000万数据中快速查找整数的挑战,强调了二分查找在数据结构与算法中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近开始学习王争老师的《数据结构与算法之美》,通过总结再加上自己的思考的形式记录这门课程,文章主要作为学习历程的记录。

课前问题:假设有1000万个整数数据,每个数据占8个字节,如何设计数据结构与算法,快速判断某个整数是否出现在这1000万数据中,同时又希望这个功能内存不要超过100M?

这个问题就引入了二分查找,举个例子来理解二分查找:假设一个数组为0-99,要查找元素23在数组中的位置

次数 猜测范围 中间数 对比大小
1 0-99 49 49>23
2 0-48 24 24>23
3 0-23 11 11<23
4 12-23 17 17<23
5 18-23 20 20<23
6 21-23 22 22<23
7 23

利用二分思想,每次都与区间中间数据比对大小,缩小查找区间的范围,二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想,每次都通过跟区间的中间元素对比,将待查找的区间缩小为原来的一半,直到找到要查找的元素,或者区间被缩小为0。

二分查找查找效率非常高。假设数据大小为n,每次查找后数据都会缩小为原来的一半,也就是会除以2,最坏的情况下,直到查找区间被缩小为空才停止。

被查找区间的大小变化:

nnn ,

### 数据结构中的二分查找复杂示例子题 #### LeetCode 34. 在排序数组中查找元素的第一个和最后一个位置 此问题是一个经典的二分查找扩展应用,其目的是在一个已排序的整数数组 `nums` 中找到给定目标值 `target` 的起始和结束位置。如果目标值不存在于数组中,则返回 `[-1, -1]`。 这是一个更复杂的二分查找变体,因为它不仅需要定位单个目标值的位置,还需要分别找出它的第一个和最后一个索引位置[^1]。 以下是实现这一功能的一个 Python 示例代码: ```python def searchRange(nums, target): def findBound(isFirst): low, high = 0, len(nums) - 1 while low <= high: mid = (low + high) // 2 if nums[mid] == target: if isFirst: if mid == 0 or nums[mid - 1] != target: return mid high = mid - 1 else: if mid == len(nums) - 1 or nums[mid + 1] != target: return mid low = mid + 1 elif nums[mid] > target: high = mid - 1 else: low = mid + 1 return -1 first_pos = findBound(True) if first_pos == -1: return [-1, -1] last_pos = findBound(False) return [first_pos, last_pos] ``` 这段代码通过两次调用辅助函数 `findBound()` 来分别获取目标值的第一个和最后一个位置。每次调用都执行一次标准的二分查找逻辑,但在发现匹配项时会进一步调整边界条件以满足特定需求。 #### 时间复杂度分析 对于上述问题,在最坏情况下(即当整个数组都需要被遍历),每一步都将搜索范围缩小一半,因此总的时间复杂度为 O(log n),其中 n 是输入数组的长度。这是由于每一次迭代都会减少大约一半的待处理数据量所致[^2]。 #### 另一复杂实例:LeetCode 852. 山脉数组的峰顶索引 这个问题涉及一种特殊的有序数组——山脉数组。所谓“山脉”是指存在某个索引 i (称为峰值)使得前部分严格递增而后部分严格递减。任务是在不预先知道具体形状的情况下快速找到这个峰值所在的位置。 解决办法依然是基于二分法的思想,只不过判断依据变成了比较中间点与其相邻右侧点之间的大小关系来决定下一步移动方向[^3]。 下面是对应的解决方案之一: ```python class Solution: def peakIndexInMountainArray(self, A: List[int]) -> int: left, right = 0, len(A)-1 while left < right: mid = (left + right)//2 if A[mid] < A[mid+1]: left = mid + 1 else: right = mid return left ``` 这里的关键在于利用了山峰特性设计了一套新的分支准则来进行有效的区间缩减操作直到锁定最终答案为止。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值