
AI应用市场
文章平均质量分 89
远洋之帆
机器学习 人工智能 数学 数据可视化 机器人
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
离散微分几何基础:流形概念与网格数据结构
**定义**: Dual Complex是指在一个给定的复形(complex)中,通过对其单纯形(simplices)进行对偶操作而得到的结构。每个单纯形的对偶对应于一个新的单纯形,通常是通过连接原始单纯形的中心点来形成。+ **应用**: Dual Complex在计算几何、图形学和拓扑学中有广泛应用,尤其是在网格生成、形状分析和数据可视化等领域。它帮助研究者理解复杂形状的性质和结构。+ **定义**原创 2024-10-11 19:09:50 · 1659 阅读 · 0 评论 -
直流电机(一)
• 结构复杂,使用和维护较方便,使用直流电源。• 调速性能好。• 起动、制动转矩大,易于快速起动、停车。• 易于控制。• 应用:轧钢机、电气机车、无轨电车、中大型龙门刨床等调速范围大的大型设备;用蓄电池做电源的地方,如汽车、拖拉机等;家用。原创 2024-08-08 17:19:05 · 1666 阅读 · 0 评论 -
Agent让大模型从“解释问题”到“解决问题”
大模型要实现从“解释”问题到“解决”问题的跨越,就离不开Agent。目前Agent有两条实现路径:1.SOP+BOM,提前对解决问题流程抽取,根据问题调用相应处理问题流程2.设定奖励规则,用RL算法让Agent自主探索文章主要是介绍了SOP+BOM的agent实现路径。这条实现路径更可控更适合当前企业实际需要。结合当前市面的几款产品,提出了:基本能力、支持工具集、操作编辑性、持续开发能力,四个维度的差评测评标准;对几款产品做了测评评价。目前看产品都具备基本工作流编排能力、每个流程测试、追溯能力,都支原创 2024-07-23 16:21:52 · 1842 阅读 · 0 评论 -
如何训练出模型的推理规划能力
近期opanai对AGI做了等级划分;等级划分意味着AGI有了一个考核定义,有了升级打怪的评价指标。并给出了目前openai正处在第一级,即将达到第二级的论断。预计在一年或者一年半内实现第二级,可以完成基本问题解决任务的系统。文章下面部分会简单的介绍一下,如何从第一级进阶到第二级。可能的技术路线,对于第一级AGI实现路径已经有非常多的讨论,并且很多企业、团队也已经实现达到了openAI第一级的水准。也就是数第一级别的pretrain、sft、rlhf三阶段已经是一个事实的实现路径标准了。原创 2024-07-22 15:33:26 · 1691 阅读 · 0 评论 -
全同态加密在大模型应用中应用
假如我们拥有两条消息 𝑚0,𝑚1 的加密,分别为 𝑐𝑡0,𝑐𝑡1 ,展开来就是:我们可以注意到,如果我们把两条密文的两个部分各自相乘的话,我们就可以得到一个新的密文 𝑐𝑡^ :𝑐𝑡我们得到的结果恰恰就是原文 𝑚0+𝑚1 加在一起之后所对应的加密密文!这样的话,如果我们得到了两条加密算法的密文,我们就可以通过这样的方法得到密文的任意线性组合了。原创 2024-07-01 18:19:57 · 2023 阅读 · 0 评论 -
用大模型实现PPT可视化几种思路
他们大致的思路是:用户内容如何呈现应是需要对用户内容理解选择合适的呈现方式,生成内容可视呈现计划大纲,然后对每部分的内容细化充分的分析挖掘ppt工具的属性来做细粒度优化呈现。充分的理解PPT这种工具的可视化呈现优势,对每部分的素材生成合适的呈现效果,比如:大小、颜色、动效,前后颜色搭配,颜色比对,图表…对于如何根据用户输入的信息做信息的整理组织,然后把整理组织信息作排版,生成合适的PPt呈现不是重点介绍对象。这种实现方式已经对ppt信息可视化做了一层建模,会对用户的输入做理解,重新组合生成合适的呈现方式。原创 2024-06-07 12:31:46 · 7282 阅读 · 0 评论 -
MotionEditor_ 通过内容感知扩散编辑视频运动
现有的基于扩散的视频编辑模型在随时间编辑源视频的属性方面取得了显著进展,但在修改运动信息的同时保持原始主角的外观和背景方面存在困难。为了解决这个问题,我们提出了MotionEditor,这是一种用于视频运动编辑的扩散模型。MotionEditor将一种新颖的内容感知运动适配器集成到ControlNet中,以捕捉时间上的运动对应关系。虽然ControlNet能够基于骨架姿势直接生成,但在修改源运动时,由于噪声(源)和条件(参考)之间的矛盾信号,它会遇到挑战。原创 2024-06-05 15:49:30 · 1304 阅读 · 0 评论 -
用大模型搭建一个自己的新闻小助手
这篇文章选择用字节开放的“扣子”编排工具来实现,DIfy、autoagent、chatglm、langflow理论上讲都可以实现。但是扣子目前提供的工具插件、以及工作流我觉得是比较容易上手的。并且很多插件是免费使用、把各种API使用需要的权限申请和配置问题解决了。所以这次实践选择用“扣子”来实现。原创 2024-05-28 19:04:59 · 1647 阅读 · 1 评论 -
Learn to Paint 光栅图转矢量图生成
https://github.com/liangwq/Chatglm_lora_multi-gpu/tree/main/APP_example平滑矢量图形综述:表示、创建、光栅化和图像矢量化的最新进展无偏扭曲区域采样在可微分渲染中的应用可微分矢量图形光栅化用于编辑和学习图片逐层矢量类人笔触的模型风格化绘画CLIPDraw:通过语言-图像编码器探索文本到绘图合成根据参考风格进行矢量图绘制基于语义感知的对象草图绘制具有不同类型和抽象级别的场景素描通过潜在扩散模型实现文本引导矢量草图合成使用扩散原创 2024-05-23 10:04:54 · 1109 阅读 · 0 评论 -
使用神经实现路径表示的文本到向量生成
给定一个文本提示,我们的目标是生成一个与文本提示的语义一致且表现出令人满意的路径属性和与人类感知一致的分层结构的SVG。由于SVG由一组路径组成,表示为SVGPath1Path2PathmSVGPath1Path2...Pathm,我们的目标是根据文本提示TTT通过以下方式优化mmm条路径:神经路径表示学习(第4节)路径几何由连接的三次贝塞尔曲线组成。我们的目标是通过将每条路径映射到一个表示为zzz。原创 2024-05-22 10:12:28 · 479 阅读 · 0 评论 -
使用扩散模型进行文本引导的SVG生成
图7:展示我们SVGDreamer生成的结果的可编辑性的例子。这份补充材料被组织成几个部分,提供了与我们在SVGDreamer方面的工作相关的额外细节和分析。在A部分,我们将展示SVGDreamer的更多定性结果,展示它能够生成具有高可编辑性、视觉质量和多样性的SVG。在B部分,我们将展示SVGDreamer在海报设计和图标设计方面的潜在应用。在C部分,我们将提供SVGDreamer的更多实现细节。在D部分,我们将解释如何在SIVE提示中识别语义对象。原创 2024-05-21 09:57:46 · 934 阅读 · 0 评论 -
根据参考风格进行矢量图绘制
利用机器学习根据给定的文本描述生成图像的技术已经取得了显著的进步,例如CLIP图像-文本编码器模型的发布;然而,当前的方法缺乏对生成图像风格的艺术控制。我们提出了一种方法,用于为给定的文本描述生成指定风格的绘图,用户可以通过一个样本图像来指定所需的绘图风格。受到艺术理论的启发,该理论认为在创作过程中风格和内容通常是不可分割的,我们提出了一个耦合的方法,称为StyleCLIPDraw,通过在整个过程中同时优化风格和内容来生成绘图,而不是在创建内容后应用风格转移。原创 2024-05-15 10:01:33 · 533 阅读 · 0 评论 -
类人笔触的模型风格化绘画
图2展示了我们方法的概览。给定一个空的画布ℎ0,我们逐步绘制并叠加在每一步渲染的笔画。在每一步绘制中,一个训练好的神经渲染器𝐺接受一组笔画参数𝒙𝑡(例如,形状、颜色、透明度和纹理),并产生一个笔画前景𝑠𝑡和一个alpha蒙版𝛼𝑡。然后我们使用软混合来混合画布、前景和alpha蒙版,并确保整个渲染过程是可微分的。软混合定义如下:其中(𝑠𝑡, 𝛼𝑡) = 𝐺(𝒙𝑡)。我们最终从所有步骤中收集笔画参数,并通过在笔画参数空间内搜索来优化它们。原创 2024-05-13 14:26:54 · 1672 阅读 · 0 评论 -
人形机器人系列——硬件介绍
人形机器人是多领域交叉技术的产物,主要由三大系统组成:感知系统、决策系统和执行系统。感知系统感知系统是人形机器人获取外界信息的途径,主要由各种传感器组成。其中,视觉传感器用于获取图像信息,如摄像头、激光雷达等;触觉传感器用于感知触碰和压力,如力/力矩传感器、声学传感器等。这些传感器收集到的信息为机器人的决策和执行提供基础。决策系统决策系统是人形机器人的大脑,负责处理和决策各种信息。它由芯片和算法组成。芯片是硬件基础,提供计算能力;算法是软件基础,用于处理和分析传感器收集到的信息,并做出相应的决策。执行系统。原创 2024-04-11 15:05:47 · 10719 阅读 · 0 评论 -
解析大型语言模型的训练、微调和推理的运行时性能
这篇论文是截至目前为数不多的介绍大模型训练配套环境比对的论文,对于想要入门大模型训练同学是个不错的入门资料。比较了不同尺寸模型(比较常用的7、13、70b),在不同型号gpu、训练框架、推理框架数据。结合自己实际工作需要和论文给出的运行时数据分析,总结了下面几条:1.二次预训练最低硬件配置,如果想要自己做简单二次预训练(7、13、70B参数)最小8卡80g显存A1002.对于小规模sft对考虑PEFT做训练就可以,freezen fintune方法需要硬件还是较大3.FlashAttention对向原创 2023-11-22 12:06:14 · 4173 阅读 · 2 评论 -
Motion Plan之搜索算法笔记
本文介绍了motion plan学院派的框架:1.前端路径规划2.后端轨迹生成3.不确定障碍物预估规划并且详细介绍了前端路径规划常用的搜索规划,介绍了搜索规划的一些前置知识:1.c-space,为了方便物体质点化处理,建图时把物体形状构建转移到图2.各种不同图如何构建成适合搜索算法的数据格式,以及不同图适合的搜索算法3.搜索算法的三个基本框架:深度搜索、广度搜索、贪心搜索详细介绍了了几种贪心搜索算法原理和实现思路:1.Dijkstra算法:2.A*搜索3.跳点搜索并且介绍了:累计成本原创 2023-11-20 23:00:36 · 1643 阅读 · 0 评论 -
Langchain知识点(下)
具体来说,系统将形成任务列表,从任务列表中拉出优先级最高的第一个任务,使用 OpenAI API 根据上下文将任务发送到执行代理并完成任务,一旦这些任务完成,它们就会被存储在内存(或者 Pinecone 这类向量数据库)中,然后,根据目标和上一个任务的结果创建新任务并确定优先级。在这个过程中,驱动任务的是三个不同作用的代理。执行器也负责处理多种复杂情况,包括处理代理选择了不存在的工具的情况、处理工具出错的情况、处理代理产生的无法解析成工具调用的输出的情况,以及在代理决策和工具调用进行观察和日志记录。原创 2023-11-06 15:01:51 · 1419 阅读 · 0 评论 -
AGENTBENCH:评估LLMs作为代理的能力
本文介绍了如何构建智能代理评测集,并对智能代理能力进行了分类。文章提出了一个多维度的基准测试,名为AGENTBENCH,用于评估大型语言模型作为代理在多轮开放式生成设置中的推理和决策能力。文章对27个基于API和开源(OSS)的LLMs进行了广泛的测试,结果显示,尽管顶级商业LLMs在复杂环境中表现出强大的代理能力,但它们与OSS竞争者之间在性能上存在显著差距。文章指出,糟糕的长期推理、决策制定和指令遵循能力是开发可用LLM代理的主要障碍。在代码和高质量多轮对齐数据上进行训练可以提高代理性能。原创 2023-11-02 10:14:27 · 3097 阅读 · 0 评论 -
AGENTTUNING:为LLM启用广义的代理能力
这篇文章介绍了一种方法,可以让大型语言模型(LLM)具备在多种代理任务上表现出色的能力,缩小了开源和商业LLM在这方面的差距。该方法称为AgentTuning,它包括以下两个步骤:● 首先,构建了一个覆盖多种代理任务的数据集,称为AgentInstruct,它包含了1,866个经过验证的代理交互轨迹,每个轨迹都有一个人类指令和一个代理动作。● 然后,设计了一种指令调优策略,将AgentInstruct和通用领域指令混合起来,对LLM进行微调。作者使用AgentTuning对Llama 2模型进行了调优原创 2023-10-31 17:42:44 · 3653 阅读 · 0 评论 -
向量检索增强chatglm生成
1.总体介绍了基于向量检索的框架,主要分为两大块:内容存储、内容检索2.具体介绍了内容存储部分技术细节:数据加载模块、数据切块模块、数据embbeding模块、数据存储模块及代码实现3.具体介绍了内容检索部分:向量相似度召回+基于上下文生成问题答案,实现原理和实现代码4.介绍了如何把向量检索生成封装成tool供agnet使用项目代码:https://github.com/liangwq/Chatglm_lora_multi-gpu/tree/main/APP_example/chatglm原创 2023-07-19 18:17:29 · 2414 阅读 · 4 评论 -
让Ai帮你工作(4)--锁定图片生成角色
1.介绍了角色锁定的三种思路2.介绍了dreambooth为何能够通过特殊符号实现角色锁定、细节锁定3.给了一个github,4步操作就可以实现自己的dreambooth模型4.这个github属于几个月前项目,diffuser已经把dreambooth项目封装进库,后面在介绍lora时候会用diffuser更精简干净带大家实现dreambooth角色锁定原创 2023-03-23 14:43:22 · 2558 阅读 · 0 评论 -
动手做个mini智能助理--数据准备(2)
mini智能小助理,可以如何收集alignment数据。介绍了智能体自我迭代,自举能力的重要性。以及人在其中如何为机器自举提供动力原创 2023-03-19 11:04:34 · 190631 阅读 · 0 评论 -
让AI帮你工作(3)--学习提效
如何用AI帮自己高效学习工作,让AGI成为我们的好助手原创 2023-03-12 15:13:43 · 957 阅读 · 0 评论 -
让AI帮你工作(2)-如何阅读pdf论文
用chatgpt最快速的复现chatpdf原创 2023-03-08 23:06:33 · 2837 阅读 · 3 评论 -
如何让AI帮你干活-娱乐(3)
这部分和大家分享如何搭建自己的stable diffusion的代码生产链路。跟大家讲了几种如何开发自己的代码,加入diffuser的框架。原创 2023-03-06 21:52:50 · 4207 阅读 · 3 评论 -
如何让AI帮你干活-娱乐(2)
用AI生成一个视频原创 2023-03-05 13:19:31 · 3128 阅读 · 9 评论 -
如何让Ai帮数据分析师干活-工作1
openai api+可视化的chatgpt一起使用了。其实如果真要做产品这些必然都是封装好的都是用openai api来做,对用户就一个需求交互框、一个输入数据cvs表的地方就可以。原创 2023-03-02 23:55:13 · 1944 阅读 · 2 评论 -
普通人如何用AI帮你干活——娱乐1
想跟大家介绍,作为一般的人没有太多编程技巧,对计算机和各种奇淫技巧的算法了解也不多的一般人。可以如何去利用AI,可以如何把问题作简单拆解和流程拆解让AI为我们服务。原创 2023-03-02 12:49:23 · 6172 阅读 · 11 评论