Scikit-Learn机器学习之k折交叉验证

本文介绍了K折交叉验证的概念,特别是在机器学习中的应用。通过对比不使用交叉验证的情况,展示了SVC模型在4折交叉验证下得分低于逻辑回归。建议参考Scikit-learn cookbook和官方文档来深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K折交叉验证

1、什么叫K折交叉验证?

在这里插入图片描述本例主要讲4折
在这里插入图片描述

2、如果不交叉验证

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

#load the classifying models
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC

iris = datasets.load_iris()
X = iris.data[:, :2]  #load the first two features of the iris data 
y = iris.target #load the target of the iris data

#split the whole set one time 将整个数据集分成训练集和测试集
#Note random state is 7 now
X_train, X_test
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值