63、基于内容的图像检索与PLS - SEM在信息系统研究中的应用

基于内容的图像检索与PLS - SEM在信息系统研究中的应用

1. 基于内容的图像检索(CBIR)

在基于内容的图像检索(CBIR)系统中,低层次图像特征提取是核心。图像特征主要分为两类:
- 全局特征 :如颜色、纹理、形状和空间位置,是CBIR中常用的提取特征。
- 局部特征 :用于描述图像中有趣的部分,如区域、对象或边缘,例如SIFT和SURF。

由于图像特征向量存在维度灾难问题,降维和索引成为挑战性任务。常用的降维技术有主成分分析(PCA)和独立成分分析(ICA),但它们对原始数据的缩放敏感。常用的索引方法有:
- 基于树的方法 :对数据空间进行分区后可处理不同形状的数据。
- 基于哈希的技术 :对数据独立和数据相关的哈希都具有灵活性。

相似性测量用于确定查询图像与数据库中每个图像的接近程度,常用的测量方法有曼哈顿距离(对高维数据中的噪声不变)和欧几里得距离(允许归一化和加权向量)。

2. Lucene图像检索系统(LIRe)

LIRe是用于CBIR的开源Java库,其主要组件包括:
- 爬虫 :从Flickr数据集抓取随机n张图像并保存到本地目录。
- 分析器 :一次仅提取一个图像特征,如局部边缘直方图。
- 索引器 :根据提取的图像特征构建基于Lucene的索引。
-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值