开篇
在上几篇我们连续说到了解决AI Agent的底层RAG引擎的幻觉,RAG引擎的幻觉包括:乱回答(张冠李戴)、编造和“没有把信息带全”即该回答的没回答、漏东西。我们说过,要解决这些问题特别是RAG精准率问题我们需要充分放大召回率。
一个RAG系统,在没有引入“3R”理论前,它们的召回率普遍低于70%甚至低于60%的。因此提升召回率是必须也要必然手段。于是我们通过了Rewrite、知识库文档入库时的Chunk机制提高了RAG的召回率,使之不断放大。但是这还是不够的,我们只试想一个点就可以知道为什么仅仅实现Rewrite以及文档切片是不够的呢?我们假设在生产实际运行中,LLM具有一定程度的“逃逸性”,即该回答1时它回答0甚至返回“NULL”,如果实施过相应生产项目的同学们或者正在实施RAG类项目的都知道这意味着什么,我们拿Rewrite环节来说下面这样的用户提问:
我是一个女生,想满足以下自己的小虚荣心,又不想贵得离谱
我们用人肉方式来扫描上述的提问我们应该做什么事呢:
寻找奢侈品、轻奢类商品、把价格从低到高排个序、把打折的奢侈品优先排在最高位。
甚至我们可以把一些非世界名牌但是可以满足女生外在虚荣心的商品也排在最高。
<