deeplearning深度学习疑惑总结

本文深入探讨了神经网络训练过程中的三项关键技巧:weight decay(权重衰减)用于防止过拟合;momentum(动量)加速梯度下降过程;batch normalization(批量归一化)改善梯度流动并减少模型对初始化的依赖。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01.在神经网络中weight decay起到的做用是什么?momentum?normalization?


weight decay(权值衰减)的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合。
在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度对损失函数的影响,若weight decay很大,则复杂的模型损失函数的值也就大。

② momentum是梯度下降法中一种常用的加速技术。
一般的SGD:x \leftarrow  x-\alpha \ast dx
      带momentum:v = β * v - α * dx, x← x + v
通俗的理解上面式子就是,如果上一次的momentum(即v)与这一次的负梯度方向是相同的,那这次下降的幅度就会加大,所以这样做能够达到加速收敛的过程。

③ batch normalization的好处:1. 提高梯度流动 2.提升学习速率 3.减少模型对初始化的依赖

参考:https://www.zhihu.com/question/24529483


02. NMS非极大抑制如何操作?

① 对所有窗口的score进行rank,取置信度最大的那个窗口
② 遍历其余所有窗口,如果IoU大于设定的threshold,则去除那个框,其余的保留
③ 重新选择score最大的那个窗口(这个时候已经是次大的那个),再重复第2步

参考:http://blog.csdn.net/shuzfan/article/details/52711706

03. Sliding window 如何操作?Selective Search?

http://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opencv/
http://www.learnopencv.com/selective-search-for-object-detection-cpp-python/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值