
自动驾驶
文章平均质量分 88
哆啦叮当
我有四次元口袋
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
OrienterNet在二维公共地图实现视觉定位的模型
OrienterNet,一种在二维公共地图实现视觉定位的模型解读原创 2024-11-16 19:53:30 · 1171 阅读 · 0 评论 -
MapLocNet由粗到细的定位网络
MapLocNet论文讲解,介绍了一种融合BEV特征由粗到细的神经网络定位方式原创 2024-11-15 20:45:59 · 544 阅读 · 0 评论 -
PARA-Drive:设计并行模型实现端到端自动驾驶
PARA-Drive是NVIDIA团队的最新作品,对比之前提出的一系列端到端架构做了许多实验研究并且提出了全新的并行设计的端到端模型结构。原创 2024-08-14 23:25:33 · 1502 阅读 · 0 评论 -
SMERF,使用SD地图来增强模型的拓扑感知
SMERF,使用SD地图来增强模型的拓扑感知原创 2024-05-18 21:37:50 · 1723 阅读 · 0 评论 -
UniAD:以规划为导向的端到端自动驾驶
UniAD:以规划为导向的端到端自动驾驶,Planning-oriented Autonomous Driving原创 2024-04-26 16:49:32 · 1417 阅读 · 0 评论 -
用扩散模型来构建自动驾驶的世界
利用扩散模型的强大能力,来构建自动驾驶世界模型,做出未来车辆运动的正确决策原创 2024-03-03 23:22:38 · 692 阅读 · 0 评论 -
端到端实现高精地图重建(TopoNet解读和横评)
端到端实现高精地图重建的网络解读:TopoNet,以及对比STSU,VectorMapNet和MapTR的横评原创 2024-02-03 10:40:39 · 3932 阅读 · 0 评论 -
DETR解读,将Transformer带入CV
介绍了使用Transformer进行端到端目标检测的方法(DETR),以及对其进行的几项改进:Deformable DETR、Multi-scale Deformable Attention和RT DETR。这些方法通过引入可变注意力机制、多尺度特征学习以及推理加速等策略,提高了模型的效率和性能,为实时目标检测任务提供了重要的技术支持。原创 2024-01-28 13:27:31 · 1270 阅读 · 0 评论 -
解读BEVFormer,新一代自动驾驶视觉工作的基石
对BEVFormer这个文章的一些个人理解和解读,介绍了文章中的一些关键概念,简单讲解示例代码原创 2024-01-26 23:32:43 · 1736 阅读 · 0 评论 -
特斯拉FSD的神经网络(Tesla 2022 AI Day)
特斯拉FSD的神经网络关于注意力机制在视觉中的使用分析和特斯拉语言模型分割拓扑网络的技术分析解读原创 2024-01-22 08:17:40 · 3530 阅读 · 0 评论