机器学习之逻辑回归、过拟合、正则化(吴恩达机器学习)

1.分类问题(Regression)

在分类问题中,你要预测的变量 𝑦 是离散的值,我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法,这是目前最流行使用最广泛的一种学习算法。顺便说一下,逻辑回归算法是分类算法,我们将它作为分类算法使用。有时候可能因为
这个算法的名字中出现了“回归”使你感到困惑,但逻辑回归算法实际上是一种分类算法,它适用于标签 𝑦 取值离散的情况,如:1 0 0 1。

为什么不用线性回归来解决分类问题 ?
简单来说,因为分类问题的y取值为固定的几个类别,譬如肿瘤分类为0 表示良性、1表示恶性,如果同样用线性回归y = k * x + b来表示,x为肿瘤尺寸,则得出的y范围可能远 > 1,但结果总会落到0和1上,会显得很奇怪。

2.逻辑回归(Logistic Regression)

前面说了,逻辑回归是适用于分类问题的常见算法,这个算法的性质是:它的输出值永远在 0 到 1 之间。

3.假设函数表达式Hypothesis Representation

回到之前的乳腺癌分类上,我希望输出的预测值是介于0~1之间,此时用逻辑回归算法怎么实现呢?
其实,逻辑回归中,可以用Sigmoid函数,来实现在R区间的输入,得到0~1之间的输出Sigmoid函数:

在这里插入图片描述

函数图像如下:

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值