半导体晶圆调平系统:基于最小二乘法的实现方案

在半导体量测设备中,晶圆的精确调平是保证量测精度的核心环节。由于晶圆本身可能存在微小翘曲或放置倾斜,若不进行调平处理,会导致量测系统在不同区域产生离焦误差,直接影响尺寸测量、缺陷检测等关键指标。本文将详细介绍基于 ZSensor 测距数据的晶圆调平方案,包括数学原理、C# 实现及工程应用要点。

一、调平技术原理

晶圆调平的核心思想是:通过分布式采集晶圆表面的高度数据,拟合出表征晶圆倾斜状态的平面方程,计算出补偿量以抵消倾斜,使晶圆表面与量测系统基准面平行。

1.1 数据采集基础

调平系统通过 ZSensor(高度传感器)采集晶圆表面 N 个点的三维坐标,形成N×3的矩阵locationMatrix,其中每行数据为(x, y, z)

  • x, y:晶圆表面点的平面坐标(通常以晶圆中心为原点建立坐标系)
  • z:该点相对于量测系统基准面的高度值

为保证拟合精度,采样点需满足:

  • 数量足够(通常 9~25 点)
  • 均匀分布于晶圆表面(覆盖有效量测区域)
  • 避开晶圆边缘及已知缺陷区域

1.2 平面拟合数学模型

假设晶圆表面可近似为理想平面,其数学方程为: \(z = ax + by + c\) 其中:

  • a:x 方向斜率(反映绕 y 轴的倾斜)
  • b:y 方向斜率(反映绕 x 轴的倾斜)
  • c:常数项(反映平面整体高度偏移)

通过最小二乘法求解参数(a, b, c),使所有采样点到拟合平面的残差平方和(RSS)最小: 

1.3 最小二乘求解

将平面方程转化为矩阵形式:Z = Xβ,其中:

通过矩阵运算求解参数向量:

1.4 倾斜角度与补偿量计算

二、C# 实现代码

以下是基于 MathNet.Numerics 库的晶圆调平算法实现,包含数据校验、平面拟合、参数计算及日志记录功能。

using System;
using System.Linq;
using MathNet.Numerics.LinearAl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值