Python中random模块生成伪随机数的标准库 有哪些神奇使用方法

本文详细介绍了Pythonrandom模块中的九种常用函数,包括生成浮点数、整数、随机选择、打乱顺序和随机样本等,并提到了伪随机数与科学计算中可能需要的高质量随机数的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

random 模块是 Python 中用于生成伪随机数的标准库。下面整理了 random 模块中一些常用的函数及其用法。

1. random() 函数:

random() 函数用于生成一个 [0.0, 1.0) 范围内的随机浮点数。

import random

num = random.random()
print(num)

2. randint(a, b) 函数:

randint(a, b) 函数用于生成一个 [a, b] 范围内的随机整数。

import random

num = random.randint(1, 10)
print(num)

3. uniform(a, b) 函数:

uniform(a, b) 函数用于生成一个 [a, b) 范围内的随机浮点数。

import random

num = random.uniform(1, 10)
print(num)

4. randrange(start, stop, step) 函数:

randrange(start, stop, step) 函数用于生成一个范围内的随机整数,可以指定起始值、结束值和步长。

import random

num = random.randrange(1, 10, 2)  # 从1到10,步长为2
print(num)

5. choice(seq) 函数:

choice(seq) 函数用于从序列 seq 中随机选择一个元素。

import random

items = [1, 2, 3, 4, 5]
selected_item = random.choice(items)
print(selected_item)

6. shuffle(seq) 函数:

shuffle(seq) 函数用于将序列 seq 中的元素随机排列,返回打乱顺序后的序列。原序列被改变。

import random

items = [1, 2, 3, 4, 5]
random.shuffle(items)
print(items)

7. sample(population, k) 函数:

sample(population, k) 函数用于从总体 population 中随机选择 k 个不重复的元素。

import random

population = [1, 2, 3, 4, 5]
selected_items = random.sample(population, 3)
print(selected_items)

8. seed(x) 函数:

seed(x) 函数用于初始化随机数生成器的种子,提供相同的种子将生成相同的随机数序列。

import random

random.seed(42)
num = random.random()
print(num)

9. getrandbits(k) 函数:

getrandbits(k) 函数用于生成 k 位的随机整数。

import random

bits = random.getrandbits(4)
print(bits)

这只是 random 模块中一些常用函数的简单示例,实际应用中可以根据需要选择适当的函数。需要注意的是,random 模块生成的是伪随机数,其实质是通过算法计算得到的,因此在科学计算等领域,可能需要使用 numpy 库的随机数生成函数,以提供更高质量的随机数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pandas120

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值