python图像数据增强——imgaug (一)

本文介绍如何使用imgaug库进行图像增强,通过旋转、加入噪声和仿射变换等方法增加数据量,解决深度学习中因图像数量有限导致的过拟合问题。详细展示了imgaug的基础用法和进阶示例,包括图像裁剪、翻转和高斯模糊等操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(一)imgaug基础用法
(二)imgaug进阶示例
(三)imgaug图像分割数据增强

在机器学习或者深度学习的问题中,因为受制于图像采集的方式,投入的精力和图像标注的难度等,用于训练的图像数量可能非常有限。这种情况下,可能出现模型过拟合,训练后的模型泛化能力差等问题,降低模型的实际使用能力,这种现象在医学图像的深度学习中尤其常见。为了在有限的数据下得到更好的分类,检测和分割的结果,往往需要使用数据增强的方式,通过对图像的旋转,加入噪声,仿射变换等方式增加数据量。这里我们就介绍一个python中常见的数据增强库,imgaug

这个包可以直接使用pip进行安装,其安装方法如下

pip3 install git+https://github.com/aleju/imgaug #从github安装
pip3 install Augmentor –user #pip直接安装

该数据增强库也非常容易上手,加入我们已经读取了二维的图像数据,记为images,images应该有四个维度,分别为(N,height,weidth,channels)就是图像数量,图像高度,图像宽度,图像的通道(RGB)。如果是灰度图的话,也必须为四个维度,其中channels为1。数据必须是uint8类型,大小在0到255之间。有了这个准备我们就可以对images中的图像数据进行增强了。

from imgaug import augmenters as iaa #引入数据增强的包

seq = iaa.Sequential([         #建立一个名为seq的实例,定义增强方法,用于增强
    iaa.Crop(px=(0, 16)),     #对图像进行crop操作,随机在距离边缘的0到16像素中选择crop范围
    iaa.Fliplr(0.5),     #对百分之五十的图像进行做左右翻转
    iaa.GaussianBlur((0, 1.0))     #在模型上使用0均值1方差进行高斯模糊
])

images_aug = seq.augment_images(images)    #应用数据增强

在上面的代码中,得到的images_aug就是数据增强之后的结果了,它就可以用来训练我们的深度学习模型或者用于其他。为了更加直观的展示数据增强的结果,我们从官网上截了如下的图像,这就是一只松鼠会被数据增强为如下的样子。
在这里插入图片描述
在下一章中,我们会展示一个基本包含了所有的分类问题数据增强方法的例子,之后如果要使用这个库,就可以直接复制然后删减得到适合自己数据的增强方法。

### Python 图像数据增强代码示例 #### 使用 OpenCV 进行图像增强 通过 `cv2` 库可以轻松实现多种基本的图像增强功能。下面是个简单的例子,展示了如何调整亮度和对比度: ```python import cv2 import numpy as np def adjust_brightness_contrast(image, brightness=0., contrast=0.): """ 调整给定图片的亮度和对比度 参数: image (numpy.ndarray): 输入图像. brightness (float): 亮度调节参数 (-1 to 1). contrast (float): 对比度调节参数 (-1 to 1). 返回: numpy.ndarray: 处理后的图像. """ if brightness != 0: if brightness > 0: shadow = brightness highlight = 255 else: shadow = 0 highlight = 255 + brightness alpha_b = (highlight - shadow)/255 gamma_b = shadow buf = cv2.addWeighted(image, alpha_b, image, 0, gamma_b) else: buf = image.copy() if contrast != 0: f = 131*(contrast + 127)/(127*(131-contrast)) alpha_c = f gamma_c = 127*(1-f) buf = cv2.addWeighted(buf, alpha_c, buf, 0, gamma_c) return buf image_path = 'path_to_image.jpg' original_img = cv2.imread(image_path) adjusted_img = adjust_brightness_contrast(original_img, brightness=-50, contrast=64) # 显示原图与处理过的图像 cv2.imshow('Original Image', original_img) cv2.imshow('Adjusted Image', adjusted_img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 此段代码实现了对输入图像的亮度和对比度调整[^1]。 #### 利用 ImgAug 实现复杂的数据增强 对于更加复杂的变换需求,则推荐使用专门设计用于机器学习任务中的图像预处理工具——ImgAug。这里给出段利用 ImgAug 执行系列随机化转换的例子: ```python from imgaug import augmenters as iaa import matplotlib.pyplot as plt # 定义序列化的增强操作列表 seq = iaa.Sequential([ iaa.Crop(px=(0, 16)), # 随机裁剪 iaa.Fliplr(0.5), # 水平翻转的概率设为50% iaa.GaussianBlur(sigma=(0, 3.0)) # 添加不同程度的高斯噪声 ]) images = [...] # 加载批待增强的图像数组 images_augmented = seq(images=images) # 应用上述定义的操作集 fig, axs = plt.subplots(nrows=2, ncols=len(images)//2, figsize=(12, 6)) for idx, ax in enumerate(axs.flat): ax.imshow(cv2.cvtColor(images[idx], cv2.COLOR_BGR2RGB)) plt.show() fig, axs = plt.subplots(nrows=2, ncols=len(images)//2, figsize=(12, 6)) for idx, ax in enumerate(axs.flat): ax.imshow(cv2.cvtColor(images_augmented[idx], cv2.COLOR_BGR2RGB)) plt.show() ``` 这段脚本不仅完成了常见的几何变形(如裁切、镜像),还加入了模糊效应来模拟现实世界条件下的变化[^3]。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值