MATLAB学习笔记 图像分割(一)

本文详细介绍了一种基于线性滤波的图像处理技术,包括点检测和线检测的方法。通过使用特定的滤波器,可以有效地从图像中检测出点特征和线特征,并通过阈值处理进一步突出这些特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像分割

点检测

先用线性滤波将图像进行处理,接着找出g的最大值,再将小于T的点去除(找出值为T的点)。

f = imread('img14.tif');
w = [-1 -1 -1; -1 8 -1; -1 -1 -1];
g = abs(imfilter(double(f), w));
T = max(g(:));
g = g >= T;
subplot(1, 2, 1), imshow(f), title('原图');
subplot(1, 2, 2), imshow(g), title('点分割后');
  • 输入:
    这里写图片描述
  • 输出:
    这里写图片描述
    也可以用ordfilt2进行过滤
线检测

其中pixedup(f, n) 将图片放大n倍

f = imread('img15.tif');
subplot(2, 3, 1), imshow(f), title('原图');
w = [2 -1 -1 ; -1 2 -1; -1 -1 2];
g = imfilter(double(f), w);
subplot(2, 3, 2), imshow(g), title('掩模后');
gtop = g(1:120, 1:120);
gtop = pixeldup(gtop, 4);
subplot(2, 3, 3), imshow(gtop), title('左上角的放大图');
gbot = g(end-119:end, end-119:end);
gbot = pixeldup(gbot, 4);
subplot(2, 3, 4), imshow(gbot), title('右上角的放大图');
g = abs(g);
subplot(2, 3, 5), imshow(g), title('掩模后的绝对值');
T = max(g(:));
g = g >= T;
subplot(2, 3, 6), imshow(g), title('满足g >= T 的点');
  • 输入:
    这里写图片描述
  • 输出:
    这里写图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值