tensorboard使用

本文介绍了如何使用PyTorch的TensorBoard工具,通过'Scatter'图表记录并可视化训练过程中'y=x'的标量数据,展示了如何设置数据标识、值和全球步长。通过'logs'文件夹展示结果,便于数据分析和模型监控。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter('logs')

for i in range(100):
    writer.add_scalar('y=x',i,i)

writer.close()

官方帮助文档:

相当于Add scalar data to summary.

Args:
    tag (string): Data identifier  # 生成图像的标题
    scalar_value (float or string/blobname): Value to save   # 标量值,相当于Y轴
    global_step (int): Global step value to record   #相当于横坐标

运行代码后:

--logdir 参数传入event files 所在的文件夹

点击蓝色超链接即可看到结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值