【模板】最小生成树

这篇博客介绍了如何运用kruskal算法解决图的最小生成树问题。通过输入无向图的节点数和边数,以及边的权重,程序会计算并输出最小生成树的总权重。如果图不连通,程序将输出'orz'。示例展示了对于给定的一组边,如何通过排序和并查集实现kruskal算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

题目描述

如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz。

输入格式

第一行包含两个整数 N,M,表示该图共有 N 个结点和 M 条无向边。

接下来 M 行每行包含三个整数 Xi,Yi,Zi,表示有一条长度为 Zi 的无向边连接结点 Xi,Yi

输出格式

如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz。

输入输出样例

输入

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3

输出

7

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
int vis[maxn], cnt, ans;

struct node{
	int x, y, z; 
}f[maxn];

bool cmp(node a, node b)
{
	return a.z < b.z;
}

int find(int x)
{
	if(vis[x] == x) return x;
	vis[x] = find(vis[x]);
	return vis[x];
}

bool merge(int a, int b)
{
	int p = find(a);
	int q = find(b);
	if(p == q) return false;
	else{
		vis[p] = q;
		return true;
	}
}

int main()
{
	int n, m;
	cin >> n >> m;
	for(int i = 0; i < n; i++){
		vis[i] = i;
	}
	for(int i = 0; i < m; i++){
		cin >> f[i].x >> f[i].y >> f[i].z;
	}
	sort(f, f + m, cmp);
	cnt = 0, ans = 0;
	for(int i = 0; i < m; i++){
		if(merge(f[i].x, f[i].y)){
			ans += f[i].z;
			cnt++;
		}
		if(cnt == n - 1) break;
	}
	if(cnt != n - 1) cout << "orz" << endl;
	else cout << ans << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值