hadoop getfile exercise

本文介绍了一个使用Shell脚本自动化的流程,用于在Hadoop和Hive环境中批量处理数据,包括格式化日期、查找特定日期的数据文件、提取相关信息并保存到本地目录。

#!/bin/sh

#Hostname Prefix
localPath="/work/tda/yunion/unionfactfile"
hadoopPath="/workspace/tda/yunion/thive"
hadoop="/opt/hadoop-1.0.3/bin/hadoop"
hive="/opt/hadoop-1.0.3/hive/bin/hive"

#格式化日期.
function formatDate()
{
    d=$1
    echo `echo ${d}|awk '{print substr($0,1,4)"-"substr($0,5,2)"-"substr($0,7,2)}'`
}

#设置全局变量.
export hadoop=${hadoop};
export hive=${hive}


fdate=`date -d yesterday +%F`
date=`date -d yesterday +%Y%m%d`
if [ $#  -eq  "1" ]
then
    date=$1
    fdate=`formatDate ${date}`
    echo $date $fdate
fi
N=0;
N2=0;
cd $localPath
rm -rf ${date}; mkdir -p ${date}
for file_tmp in `${hadoop} fs -ls /workspace/tda/yunion/thive/*|grep f_ |grep ${date} `;do
    let "N++"
    if [ $(($N%8)) == 0 ]
    then
        let "num++"
        echo $file_tmp
        for file in `${hadoop} fs -ls ${file_tmp}/* |grep 000`;do
            let "N2++"
            if [ $(($N2%8)) == 0 ]
            then
                fileName=`echo $file |awk -F"/" '{print $6}'`
                fileName1=`echo $fileName|awk '{printf("%s",tolower($0))}' `
                echo $num ".." $file $fileName1
            #/tudou/pvOutput/20120109/searchnum/part-00000
            ${hadoop} fs -cat ${file} |awk -F"\t" '$1=='${date}'{print $0}' |awk -F"\t" '$NF>0 && $0 !~/\\N/ && $0 !~/"/{print $0} '  >> ${date}/${fileName1}
            fi
        done
    fi
done

#tar czvf ${date}.tgz ${date}/
#sz ${date}.tgz

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值