目录
🎬 攻城狮7号:个人主页
🔥 个人专栏: 《C/C++算法》
⛺️ 君子慎独!
🌈 大家好,欢迎来访我的博客!
⛳️ 此篇文章主要讲解算法题目:解最大回文数乘积
📚 本期文章收录在《C/C++算法》,大家有兴趣可以自行查看!
⛺️ 欢迎各位 ✔️ 点赞 👍 收藏 ⭐留言 📝!
一、题目
给定一个整数 n ,返回 可表示为两个 n
位整数乘积的 最大回文整数 。因为答案可能非常大,所以返回它对 1337
取余 。
示例 1:
输入:n = 2 输出:987 解释:99 x 91 = 9009, 9009 % 1337 = 987
示例 2:
输入:n = 1 输出:9
提示:
1 <= n <= 8
二、解题思路
思路一:
要找到两个 n 位整数乘积的最大回文数,我们可以按照以下步骤进行:
(1) **确定范围**:首先,n 位整数的范围是从 `10^(n-1)` 到 `10^n - 1`。例如,当 n=2 时,范围是 10 到 99。
(2) **生成回文数**:我们需要生成所有可能的回文数,并从大到小检查它们是否可以表示为两个 n 位整数的乘积。
(3)**检查回文数**:对于每个回文数,检查是否存在两个 n 位整数,使得它们的乘积等于该回文数。
(4)**取模运算**:由于结果可能非常大,我们需要对结果取模 1337。
代码实现
#include <iostream>
#include <cmath>
#include <string>
#include <algorithm>
using namespace std;
// 判断一个数是否是回文数
bool isPalindrome(long long num) {
string s = to_string(num);
string reversed_s = s;
reverse(reversed_s.begin(), reversed_s.end());
return s == reversed_s;
}
// 找到最大的回文数乘积
int largestPalindrome(int n) {
if (n == 1) return 9; // 特殊情况处理
long long lower = pow(10, n - 1); // n位数的下限
long long upper = pow(10, n) - 1; // n位数的上限
long long maxPalindrome = 0;
// 从大到小遍历所有可能的回文数
for (long long i = upper; i >= lower; --i) {
// 构造回文数
string s = to_string(i);
string reversed_s = s;
reverse(reversed_s.begin(), reversed_s.end());
long long palindrome = stoll(s + reversed_s);
// 检查回文数是否可以表示为两个n位数的乘积
for (long long j = upper; j * j >= palindrome; --j) {
if (palindrome % j == 0 && palindrome / j >= lower && palindrome / j <= upper) {
maxPalindrome = palindrome;
break;
}
}
if (maxPalindrome != 0) break;
}
return maxPalindrome % 1337;
}
int main() {
int n;
cout << "请输入n的值: ";
cin >> n;
int result = largestPalindrome(n);
cout << "最大的回文数乘积对1337取余的结果是: " << result << endl;
return 0;
}
复杂度分析
- 时间复杂度:O(10^(2n)),因为我们需要遍历所有可能的回文数。
- 空间复杂度:O(1),只使用了常数空间。
这个算法在 n 较小(如 n <= 8)时是可行的,但对于更大的 n,可能需要更高效的算法。
上面算法复杂度较高,下面探寻优化算法
思路二:
(1)**问题分析**
- 我们需要找到两个 `n` 位整数的乘积,且这个乘积是一个回文数。
- 由于回文数可能非常大,我们需要对结果取模 `1337`。
(2)**回文数构造**
- 回文数可以表示为 `P = upper * 10^n + lower`,其中 `lower` 是 `upper` 的反转数。
- 例如,当 `upper = 99` 时,`lower = 99`,回文数为 `99 * 100 + 99 = 9999`。
(3)**数学优化**
- 通过数学方法,我们可以将问题转化为求解方程:
- 判别式 `discriminant = upper^2 - 4 * lower` 必须是非负数,并且是完全平方数,才能保证方程有整数解。
(4)**算法步骤**
- 遍历 `const_val`,从 `1` 到 `10^n - 1`。
- 对于每个 `const_val`,计算 `upper = 10^n - const_val`。
- 反转 `upper` 得到 `lower`。
- 计算判别式 `discriminant`,并检查是否为完全平方数。
- 如果满足条件,构造回文数并返回其对 `1337` 取余的结果。
代码实现
#include <iostream>
#include <cmath>
#include <string>
#include <algorithm>
using namespace std;
class Solution {
public:
int largestPalindrome(int n) {
// 特殊情况处理:当 n = 1 时,最大回文数是 9(3 * 3 = 9)
if (n == 1) return 9;
// const_val 是一个增量变量,用于调整 upper 的值
long long const_val = 1;
// 遍历所有可能的 const_val,直到 10^n
while (const_val < pow(10, n)) {
// upper 是从 10^n - 1 开始递减的数
long long upper = pow(10, n) - const_val;
// 将 upper 转换为字符串并反转,得到 lower
string upper_str = to_string(upper);
reverse(upper_str.begin(), upper_str.end());
long long lower = stoll(upper_str);
// 计算判别式 discriminant = const_val^2 - lower * 4
long long discriminant = const_val * const_val - lower * 4;
// 如果判别式大于等于 0,并且判别式是完全平方数
if (discriminant >= 0) {
long long sqrt_discriminant = sqrt(discriminant);
if (sqrt_discriminant * sqrt_discriminant == discriminant) {
// 构造回文数 palindrome = upper * 10^n + lower
long long palindrome = upper * pow(10, n) + lower;
// 返回回文数对 1337 取余的结果
return palindrome % 1337;
}
}
// 增加 const_val,继续尝试下一个值
const_val++;
}
// 如果没有找到满足条件的回文数,返回 -1
return -1;
}
};
int main() {
Solution solution;
int n;
cout << "请输入n的值: ";
cin >> n;
// 调用 largestPalindrome 函数,计算并输出结果
int result = solution.largestPalindrome(n);
cout << "最大的回文数乘积对1337取余的结果是: " << result << endl;
return 0;
}
时间复杂度
- 外层循环最多执行 `10^n` 次。
- 内层计算判别式和检查完全平方数的操作是常数时间。
- 总体时间复杂度为 `O(10^n)`,但由于数学优化,实际运行时间较短。
看到这里了还不给博主点一个:
⛳️ 点赞
☀️收藏
⭐️ 关注
!
💛 💙 💜 ❤️ 💚💓 💗 💕 💞 💘 💖
再次感谢大家的支持!
你们的点赞就是博主更新最大的动力!