【11.3】数学思维-解最大回文数乘积

目录

一、题目

二、解题思路


 🎬 攻城狮7号个人主页

🔥 个人专栏: 《C/C++算法》

⛺️ 君子慎独!

 🌈 大家好,欢迎来访我的博客!
⛳️ 此篇文章主要讲解算法题目:解最大回文数乘积
📚 本期文章收录在《C/C++算法》,大家有兴趣可以自行查看!
⛺️ 欢迎各位 ✔️ 点赞 👍 收藏 ⭐留言 📝!

一、题目

        给定一个整数 n ,返回 可表示为两个 n 位整数乘积的 最大回文整数 。因为答案可能非常大,所以返回它对 1337 取余

示例 1:

输入:n = 2
输出:987
解释:99 x 91 = 9009, 9009 % 1337 = 987

示例 2:

输入:n = 1
输出:9

提示:

  • 1 <= n <= 8

二、解题思路

思路一:

要找到两个 n 位整数乘积的最大回文数,我们可以按照以下步骤进行:

(1) **确定范围**:首先,n 位整数的范围是从 `10^(n-1)` 到 `10^n - 1`。例如,当 n=2 时,范围是 10 到 99。

(2) **生成回文数**:我们需要生成所有可能的回文数,并从大到小检查它们是否可以表示为两个 n 位整数的乘积。

(3)**检查回文数**:对于每个回文数,检查是否存在两个 n 位整数,使得它们的乘积等于该回文数。

(4)**取模运算**:由于结果可能非常大,我们需要对结果取模 1337。

代码实现

#include <iostream>
#include <cmath>
#include <string>
#include <algorithm>

using namespace std;

// 判断一个数是否是回文数
bool isPalindrome(long long num) {
    string s = to_string(num);
    string reversed_s = s;
    reverse(reversed_s.begin(), reversed_s.end());
    return s == reversed_s;
}

// 找到最大的回文数乘积
int largestPalindrome(int n) {
    if (n == 1) return 9; // 特殊情况处理

    long long lower = pow(10, n - 1); // n位数的下限
    long long upper = pow(10, n) - 1; // n位数的上限

    long long maxPalindrome = 0;

    // 从大到小遍历所有可能的回文数
    for (long long i = upper; i >= lower; --i) {
        // 构造回文数
        string s = to_string(i);
        string reversed_s = s;
        reverse(reversed_s.begin(), reversed_s.end());
        long long palindrome = stoll(s + reversed_s);

        // 检查回文数是否可以表示为两个n位数的乘积
        for (long long j = upper; j * j >= palindrome; --j) {
            if (palindrome % j == 0 && palindrome / j >= lower && palindrome / j <= upper) {
                maxPalindrome = palindrome;
                break;
            }
        }
        if (maxPalindrome != 0) break;
    }

    return maxPalindrome % 1337;
}

int main() {
    int n;
    cout << "请输入n的值: ";
    cin >> n;

    int result = largestPalindrome(n);
    cout << "最大的回文数乘积对1337取余的结果是: " << result << endl;

    return 0;
}

复杂度分析

- 时间复杂度:O(10^(2n)),因为我们需要遍历所有可能的回文数。
- 空间复杂度:O(1),只使用了常数空间。

这个算法在 n 较小(如 n <= 8)时是可行的,但对于更大的 n,可能需要更高效的算法。

上面算法复杂度较高,下面探寻优化算法

思路二:

(1)**问题分析**
   - 我们需要找到两个 `n` 位整数的乘积,且这个乘积是一个回文数。
   - 由于回文数可能非常大,我们需要对结果取模 `1337`。

(2)**回文数构造**
   - 回文数可以表示为 `P = upper * 10^n + lower`,其中 `lower` 是 `upper` 的反转数。
   - 例如,当 `upper = 99` 时,`lower = 99`,回文数为 `99 * 100 + 99 = 9999`。

(3)**数学优化**
   - 通过数学方法,我们可以将问题转化为求解方程:


   - 判别式 `discriminant = upper^2 - 4 * lower` 必须是非负数,并且是完全平方数,才能保证方程有整数解。

(4)**算法步骤**
   - 遍历 `const_val`,从 `1` 到 `10^n - 1`。
   - 对于每个 `const_val`,计算 `upper = 10^n - const_val`。
   - 反转 `upper` 得到 `lower`。
   - 计算判别式 `discriminant`,并检查是否为完全平方数。
   - 如果满足条件,构造回文数并返回其对 `1337` 取余的结果。

代码实现

#include <iostream>
#include <cmath>
#include <string>
#include <algorithm>

using namespace std;

class Solution {
public:
    int largestPalindrome(int n) {
        // 特殊情况处理:当 n = 1 时,最大回文数是 9(3 * 3 = 9)
        if (n == 1) return 9;

        // const_val 是一个增量变量,用于调整 upper 的值
        long long const_val = 1;
        // 遍历所有可能的 const_val,直到 10^n
        while (const_val < pow(10, n)) {
            // upper 是从 10^n - 1 开始递减的数
            long long upper = pow(10, n) - const_val;
            // 将 upper 转换为字符串并反转,得到 lower
            string upper_str = to_string(upper);
            reverse(upper_str.begin(), upper_str.end());
            long long lower = stoll(upper_str);

            // 计算判别式 discriminant = const_val^2 - lower * 4
            long long discriminant = const_val * const_val - lower * 4;
            // 如果判别式大于等于 0,并且判别式是完全平方数
            if (discriminant >= 0) {
                long long sqrt_discriminant = sqrt(discriminant);
                if (sqrt_discriminant * sqrt_discriminant == discriminant) {
                    // 构造回文数 palindrome = upper * 10^n + lower
                    long long palindrome = upper * pow(10, n) + lower;
                    // 返回回文数对 1337 取余的结果
                    return palindrome % 1337;
                }
            }
            // 增加 const_val,继续尝试下一个值
            const_val++;
        }
        // 如果没有找到满足条件的回文数,返回 -1
        return -1;
    }
};

int main() {
    Solution solution;
    int n;
    cout << "请输入n的值: ";
    cin >> n;

    // 调用 largestPalindrome 函数,计算并输出结果
    int result = solution.largestPalindrome(n);
    cout << "最大的回文数乘积对1337取余的结果是: " << result << endl;

    return 0;
}

时间复杂度
   - 外层循环最多执行 `10^n` 次。
   - 内层计算判别式和检查完全平方数的操作是常数时间。
   - 总体时间复杂度为 `O(10^n)`,但由于数学优化,实际运行时间较短。

看到这里了还不给博主点一个:
⛳️ 点赞☀️收藏 ⭐️ 关注

💛 💙 💜 ❤️ 💚💓 💗 💕 💞 💘 💖
再次感谢大家的支持!
你们的点赞就是博主更新最大的动力!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

攻城狮7号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值