【11.4】数学思维-解排列序列

目录

一、题目

二、解题思路

三、代码实现


 🎬 攻城狮7号个人主页

🔥 个人专栏: 《C/C++算法》

⛺️ 君子慎独!

 🌈 大家好,欢迎来访我的博客!
⛳️ 此篇文章主要讲解算法题目:解排列序列
📚 本期文章收录在《C/C++算法》,大家有兴趣可以自行查看!
⛺️ 欢迎各位 ✔️ 点赞 👍 收藏 ⭐留言 📝!

一、题目

给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。

按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

给定 n 和 k,返回第 k 个排列。

示例 1:

输入:n = 3, k = 3
输出:"213"

示例 2:

输入:n = 4, k = 9
输出:"2314"

示例 3:

输入:n = 3, k = 1
输出:"123"

提示:

  • 1 <= n <= 9
  • 1 <= k <= n!

二、解题思路

数学规律
- 对于 `n` 个元素的排列,每个位置上的数字选择是固定的。
- 第 `k` 个排列可以通过数学计算直接构造,而不需要生成所有排列。

具体步骤
(1)**计算阶乘**:
   - 预先计算 `1` 到 `n-1` 的阶乘,用于确定每个位置上的数字。
   - 例如,`n = 4` 时,阶乘为 `[1, 2, 6, 24]`。

(2)**确定每个位置上的数字**:
   - 从最高位开始,依次确定每个位置上的数字。
   - 对于第 `i` 位,计算 `k / (n-i)!`,得到当前数字在剩余数字中的索引。
   - 将选中的数字从剩余数字中移除,并更新 `k` 为 `k % (n-i)!`。

(3)**构造排列**:
   - 将选中的数字按顺序拼接成最终的排列。

三、代码实现

#include <iostream>
#include <vector>
#include <string>

using namespace std;

class Solution {
public:
    // 返回第k个排列
    string getPermutation(int n, int k) {
        // 计算阶乘并存储,方便后续计算排列的索引
        vector<int> factorial(n, 1);
        for (int i = 1; i < n; ++i) {
            factorial[i] = factorial[i - 1] * i;
        }

        // 初始化数字列表,这些数字将用于构建排列
        vector<int> nums(n);
        for (int i = 0; i < n; ++i) {
            nums[i] = i + 1; // 填充从1到n的数字
        }

        // 将k减1以转换为基于0的索引
        --k;

        string result; // 用于存储最终排列的字符串
        // 构建排列
        for (int i = n - 1; i >= 0; --i) {
            // 计算当前位置的数字索引
            int index = k / factorial[i];
            // 将数字添加到结果字符串
            result += to_string(nums[index]);

            // 从列表中移除已经使用的数字
            nums.erase(nums.begin() + index);

            // 更新k值,为下一个位置的数字计算索引
            k %= factorial[i];
        }

        return result; // 返回最终排列
    }
};

int main() {
    Solution solution;
    int n, k;

    // 示例
    n = 3; // n表示排列中的数字范围是1到n
    k = 3; // k表示我们要找的是第k个排列
    // 输出第k个排列
    cout << "n = " << n << ", k = " << k << " 的排列是: " << solution.getPermutation(n, k) << endl;

    return 0;
}

复杂度分析

- **时间复杂度**:`O(n^2)`,其中 `n` 是数字的个数。每次移除数字的时间复杂度为 `O(n)`。
- **空间复杂度**:`O(n)`,用于存储阶乘和可用数字。

        通过数学规律直接构造第 `k` 个排列,避免了生成所有排列的高复杂度。这种方法高效且易于实现,适合解决类似问题。

看到这里了还不给博主点一个:
⛳️ 点赞☀️收藏 ⭐️ 关注

💛 💙 💜 ❤️ 💚💓 💗 💕 💞 💘 💖
再次感谢大家的支持!
你们的点赞就是博主更新最大的动力!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

攻城狮7号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值