自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

代码让AI扣

不想做码农

  • 博客(248)
  • 资源 (3)
  • 收藏
  • 关注

原创 Spring AI 系列之四十 - Spring AI Alibaba-集成百炼智能体

本章演示了如何使用Spring AI Alibaba集成百炼平台的智能体,这样对于实际应用开发来说是非常迅速的,这就是Spring AI Alibaba框架的优势之一。好了,本次对于Spring AI Alibaba的内容已经讲完了,虽然还有些内容没有讲到,但是相信你看文档也能够很快掌握。关于Spring AI的章节也就完整讲完了,本次系列就到此结束。Spring AI系列上一章:《

2025-08-08 15:51:35 910

原创 Spring AI 系列之三十九 - Spring AI Alibaba-集成百炼知识库

本章演示了如何使用Spring AI Alibaba集成百炼平台的知识库,这样对于实际应用开发来说是非常迅速的,这就是Spring AI Alibaba框架的优势之一。下一章将讲如何集成百炼平台的线上智能体。Spring AI系列上一章:《

2025-08-08 15:49:47 1122

原创 Spring AI 系列之三十八 - Spring AI Alibaba-Tool Calling

本章讲解了Spring AI Alibaba的Tool Calling的生态,可以看出在Spring AI的基础上,Spring AI Alibaba扩展了很多插件,这样也是丰富了Spring AI的生态,对于java用户来说是一个很好的福音。Spring AI系列上一章:《

2025-08-07 08:33:36 841

原创 Spring AI 系列之三十七 - Spring AI Alibaba-DocumentReader

本章讲解了Spring AI Alibaba的DocumentReader生态,可以看出在Spring AI的基础上,Spring AI Alibaba扩展了很多插件,这样也是丰富了Spring AI的生态,对于java用户来说是一个很好的福音。Spring AI系列上一章:《

2025-08-07 08:30:08 869

原创 Spring AI 系列之三十六 - Spring AI Alibaba-nl2sql

本章通过讲解nl2sql使用方式,可以让用户便捷的搭建一个nl2sql智能体。但是nl2sql只能算是一个实现代码框架,还不能算是一个真正的智能体,

2025-08-05 16:02:55 1303

原创 Spring AI 系列之三十五 - Spring AI Alibaba-Graph框架之MCP

本章演示了Graph中如何访问MCP服务,可见其架构的可扩展性,在Spring AI Alibaba中有一个com.alibaba.cloud.ai.graph.node.McpNode的MCP访问节点实现,但是该节点只是一个固定MCP访问,即需要传入方法和参数,并没有配置大模型。如果你构建的Graph中只是简单调用MCP服务,则可以直接使用com.alibaba.cloud.ai.graph.node.McpNode节点。

2025-08-05 16:00:56 1540

原创 Spring AI 系列之三十四 - Spring AI Alibaba-Graph框架之并行执行

本章通过并行执行示例,演示了Graph的并行执行能力,并通过分析其底层原理,知道其通过ParallelNode实现最终的并行。下一章将继续讲Graph框架的另外一个功能MCP。Spring AI系列上一章:《

2025-08-04 10:18:02 765

原创 Spring AI 系列之三十三 - Spring AI Alibaba-Graph框架之人类反馈

本章通过一个更为复杂的示例,演示了Spring AI Alibaba-Graph框架的强大之处,最后分析了Graph的底层原理,让用户可以了解Graph的工作方式,其中着重了解了中断机制以及NodeAction 和 EdgeAction 的作用。下一章还将继续探索Graph的其它功能。Spring AI系列上一章:《

2025-08-04 10:14:41 996

原创 Spring AI 系列之三十二 - Spring AI Alibaba-Graph框架之入门

本章通过讲解Graph框架,初步认识构建一个工作流或者智能体的基本流程。这就是Spring AI Alibaba相对于Spring AI 的重要扩展之一。接下来几章,将展现Graph框架不同的节点和工作流,配合更复杂一点的功能,让你认识一下Spring AI Alibaba的Graph框架强大Spring AI系列上一章:《

2025-08-03 09:57:14 1333

原创 Spring AI 系列之三十一 - Spring AI Alibaba-基于Nacos的MCP

本章通过一个基于Nacos的MCP服务端和MCP客户端,演示了Spring AI Alibaba-基于Nacos的MCP实现方法,当然Spring AI Alibaba-基于Nacos的MCP是一种企业级的应用模式,详情可以参考。

2025-08-03 09:55:21 1266 2

原创 Spring AI 系列之三十 - Spring AI Alibaba-其它模型

通过本章演示不同类型大模型的使用,相信用户现在可以知道Spring AI Alibaba的价值。下一章继续讲解Spring AI Alibaba基于企业级应用实践的一个扩展点:基于Nacos的MCPSpring AI系列上一章:《

2025-08-01 10:05:41 1290

原创 Spring AI 系列之二十九 - Spring AI Alibaba-聊天记忆

本章演示了Spring AI Alibaba扩展的Redis存储,通过引入Spring AI Alibaba可以实现更多的存储类型。下一章将演示Spring AI Alibaba如何使用其它类型的大模型Spring AI系列上一章:《

2025-08-01 10:04:22 1028

原创 Spring AI 系列之二十八 - Spring AI Alibaba-基于Nacos的prompt模版

本章通过演示Spring AI Alibaba-基于Nacos的prompt模版,并简单解析了其实现原理。下一章将讲解Spring AI Alibaba对于聊天记忆的扩展。Spring AI系列上一章:《

2025-07-31 09:59:48 1102

原创 Spring AI 系列之二十七 - Spring AI Alibaba-入门

开源项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。如果学了Spring AI,那么Spring AI Alibaba几乎零成本就可以上手,同时还可以使用其应用开发领域的最佳实践方法。其github地址其官方文档:基于 Spring AI Alibaba Graph 开发者可快速构建工作流、多智能体应用,无需关心流程编排、上下文记忆管理等底层实现。

2025-07-31 09:57:38 1019 2

原创 Spring AI 系列之二十六 - 可观测

本章讲解了Spring AI的可观测,其各个部分都有可观测的数据,当然Spring AI还提供可扩展性监测,这个就不做演示。至此,关于Spring AI部分就已经讲完了,但是对于很多中国的开发者来说,Spring AI的设计和偏向对于中国开发者来说不是很友好,因此下面还会讲一个Spring-AI-Alibaba框架,这个对中国的开发人员可能会比较关注。Spring AI系列上一章:《

2025-07-30 09:09:08 1033

原创 Spring AI 系列之二十五 - Evaluation模型评估

本章通过演示Spring AI框架中Evaluation模型评估模块,这在实际业务场景使用是非常有用的。下一章将讲解Spring AI 的最后一部分:可观测性。Spring AI系列上一章:《

2025-07-30 09:05:22 932

原创 Spring AI 系列之二十四 - ModerationModel

本章讲述了什么是内容审核模型,并对Spring AI 中的ModerationModel相关类和接口进行讲解。最后通过使用Mistral模型演示了效果。看到有内容审核模型,有朋友可能会想到大模型经常出现幻觉,那么应该就有评估是否存在幻觉的测试,Spring AI也提供了Evaluation这样的模块实现模型评估测试,下一章将着重介绍这一部分的使用。Spring AI系列上一章:《

2025-07-24 16:10:50 924

原创 Spring AI 系列之二十三 - AudioModels

本章讲了Spring AI的AudioModels音频模型,很遗憾由于目前音频的各个模型厂商还没有形成一个统一规范,因此Spring AI也没有做出太多封装,而且目前接入的只有一个Open-AI音频模型。不过相信后面会越来越好。Spring AI系列上一章:《

2025-07-24 16:07:32 937

原创 Spring AI 系列之二十二 - ImageModel

本章介绍Spring AI的ImageModel,包括其源码、参数和返回值。同时也通过示例演示如何访问智谱的图像模型,可以看出Spring AI对于图像模型也是封装了一个非常简便的ImageModel,让用户无需关心底层的访问逻辑。下一章将继续讲非聊天大模型之音频大模型。Spring AI系列上一章:《

2025-07-23 15:49:59 1381

原创 Spring AI 系列之二十一 - EmbeddingModel

首先在人类社会中使用的文字、图片、音频、视频等数据,如何让大模型识别。计算机只会识别0和1,那么这时候要让计算机识别文字,就需要把所有文字进行编码,以中文为例比如00001代表男,00002代表女,这样每个字都有一个编码。虽然编码可以让计算机识别,但是还是有缺点的。最大的缺点就是文字之间是有一定的关联关系,也就是说每个字独立编码,那么机器是不理解文字之间的关系,为了解决这个问题,分词就出现了。为了解决文字之间的关系。这时候就有人想到使用Tokenizer 分词器。

2025-07-23 15:47:23 973

原创 Spring AI 系列之二十 - Hugging Face 集成

本章说明了Hugging Face社区,并通过在其云端部署qwen模型。然后通过Spring AI的客户端进行访问。Hugging Face是一个大模型开发者绕不开的社区,所以要做大模型的朋友,可以多关注该网站。下一章开始,将进入Spring AI中集成非聊天大模型的讲解,比如embedding模型、图像模型等等Spring AI系列上一章:《

2025-07-22 15:20:57 1023

原创 Spring AI 系列之十九 - Ollama集成Deepseek

本章演示了如何使用Ollama部署大模型,并通过Spring AI进行访问。Ollama通过统一规范,让不同厂商的大模型统一化,这个对后续应用非常友好,因此现在很多人都喜欢使用该方式部署大模型,因此了解Ollama以及Spring AI 如何使用非常重要。下一章继续讨论如何使用huggingface部署大模型。

2025-07-22 15:16:31 793

原创 Spring AI 系列之十八 - ChatModel

本章通过解析ChatModel源码,并通过几个示例演示了不通过ChatClient的方式使用ChatModel。虽然一样可以实现,但是如果遇到如RAG、MCP等复杂场景,其使用便捷度就没有ChatClient那么高。ChatModel聊天大模型是比较规范和成熟的模型,因此在Spring AI中有很多不同厂商的实现,下两章将针对聊天大模型比较常用的2种部署模式进行讲解。Spring AI系列上一章:《[Spring AI 系列之十七 - ChatClient源码解析。

2025-07-21 15:07:21 956

原创 Spring AI 系列之十七 - ChatClient源码解析

本章通过解析ChatClient的创建流程和底层源码,可以知道ChatClient其实是封装了一套基础调用聊天大模型的框架,其底层是通过ChatModel进行调用聊天大模型,而ChatModel就是Spring AI对不同厂商聊天大模型的一个抽象接口,各大厂商将在其基础上实现自己的ChatModel封装。而在上层之所以再次封装ChatClient的API是因为聊天大模型应用场景较为成熟,因此通过封装ChatClient来实现MCP、RAG等规范功能,方便用户使用。

2025-07-21 15:01:47 1066

原创 Spring AI 系列之十六 - RAG-ETL之三

本章演示了Spring AI的ETL功能Writers模块。到目前为止,关于Spring AI的基本使用就已经讲完大部分,但是关于Spring AI更高阶的使用,后面章节会继续讲解。不过在此之前,可能要先了解一下Spring AI的基本源码,对于后面功能的使用有更好的理解。因此从下一章开始,会从ChatClient开始讲解源码。

2025-07-17 10:21:44 415

原创 Spring AI 系列之十五 - RAG-ETL之二

本章针对Spring AI的ETL中Transformers模块的讲解和演示,整体来说,其文档分块功能还是有待提升,不像Langchain4j 那样继承了Langchain的多种文档分块的算法,不过相信后面慢慢会补充完善,当然,你也可以自定义文档分块来实现Langchain4j 中的一些算法。下一章将继续讲解Spring AI中ETL最后一块功能Writers。

2025-07-17 10:20:24 1009

原创 Spring AI 系列之十四 - RAG-ETL之一

本章介绍了Spring AI的ETL框架,其很好支持RAG的开发。并着重对DocumentReaders部分的各个插件进行示例演示。下一章将继续讲解Spring AI的ETL框架中的Transformers和Writers模块。

2025-07-16 10:15:37 856

原创 Spring AI 系列之十三 - RAG-加载本地嵌入模型

本章演示了如何通过本地加载embedding模型,当然包括大模型也可以本地化部署,这样就可以实现RAG过程中完全本地化。下一章还会继续对Spring AI中RAG的功能进行探讨。

2025-07-16 10:14:00 1617

原创 Spring AI 系列之十二 - RAG-进阶RetrievalAugmentationAdvisor案例

*** 一个RRF算法*/// 阻尼常数 k// 计算多路检索结果的 RRF 融合分数// 遍历每个检索系统结果rank++) {// 假设 Document 有唯一 ID// 记录文档对象(避免重复创建)// 累加 RRF 分数:1/(k + rank)// 按 RRF 分数降序排序。

2025-07-15 09:09:03 1013

原创 Spring AI 系列之十一 - RAG-进阶RetrievalAugmentationAdvisor

本章针对Spring AI的RAG模块RetrievalAugmentationAdvisor进行详细的说明,同时对每个模块的功能进行了演示。下一章通过一个整合的完整案例,演示RetrievalAugmentationAdvisor的整体流程。

2025-07-15 09:07:13 1301

原创 Spring AI 系列之十 - RAG-进阶QuestionAnswerAdvisor

本章讲解的简单版RAG的实现QuestionAnswerAdvisor,并对其内部原理进行解析。但是对于一个真正的RAG来说,QuestionAnswerAdvisor还是远远没法满足条件。下一章将讲解RetrievalAugmentationAdvisor。

2025-07-14 09:01:10 921

原创 Spring AI 系列之九 - RAG-入门

本章讲解了RAG的原理,并通过Spring AI一个入门示例,就实现了RAG的功能。从示例可以看到Spring AI对RAG的封装后,对用户的使用十分简便。关于Spring AI实现RAG还有更深入的功能,接下来几章会详细讲解。

2025-07-14 08:59:54 1043

原创 Spring AI 系列之八 - MCP Server

本章演示通过2种方式建立了MCP-Server服务,对于MCP的内容还比较多,这里只是一个入门。如果对这一块感兴趣的朋友,需要先研究一下MCP协议,里面涉及的配置也可以参考。

2025-07-10 17:30:05 954

原创 Spring AI 系列之七 - MCP Client

先来看看官方文档的定义:翻译过来就是:MCP 是一种开放协议,它规范了应用程序如何为大型语言模型提供上下文。可以把 MCP 想象成 AI 应用程序的 USB-C 接口。就像 USB-C 为您的设备连接各种外设和配件提供了标准化方式一样,MCP 也为 AI 模型连接不同的数据源和工具提供了标准化方式。上下文标准化不同的数据源和工具。1)工具对外提供服务统一化:解决不断增长的各式各样的工具,大模型可以直接接入,无需适配各种工具。

2025-07-10 17:27:20 1392

原创 Spring AI 系列之六 - 工具调用

在Spring AI中定义工具有两种方式以下代码参考lesson07子模块以声明方式使用注解@Tool以编程方式,使用MethodToolCallback注意1)Optional2)异步类型 (比如:CompletableFuture, Future)3)响应式类型(比如:Flow, Mono, Flux)4)函数类型 (比如:Function, Supplier, Consumer).以编程方式,使用FunctionToolCallback以声明方式使用注解@Bean注意。

2025-07-09 14:25:15 1067

原创 Spring AI 系列之五 - 聊天记忆之自定义

代码参考lesson06子模块1)自定义Repository@Override@Override@Override// 由于每次的messages都会获取到之前的数据,因此要先删除,在插入@Override2)创建RedisMemoryController 进行演示.defaultAdvisors(MessageChatMemoryAdvisor.builder(chatMemory).build()) // 通过不同角色Message方式传递聊天记忆。

2025-07-09 14:24:04 1157

原创 Spring AI 系列之四 - 聊天记忆之入门

本章介绍了Spring AI如何快速的搭建具有聊天记忆的功能,并实现了基于MySQL数据库的聊天记录。在Spring AI自身实现的。

2025-07-08 09:25:24 1012

原创 Spring AI 系列之三 - 结构化输出

本章讲解了如何使用Spring AI进行格式化输出,这个在编写流程化功能非常重要,保证格式化输出的质量,可能需要用户不断的调试提示语。下一章将会讲解Spring AI如何实现长记忆。

2025-07-08 09:24:07 1116

原创 Spring AI 系列之二 - 提示词

本章介绍了提示词在Spring AI中如何使用,可以看到Spring AI已经封装了常见的提示词功能。下一章将介绍如何在Spring AI中实现长记忆功能(也就是真正的对话聊天)。

2025-07-07 09:12:17 480

原创 Spring AI 系列之一 - 开篇

本章讲述了Spring AI的来源以及功能特性,并使用一个入门示例作为引子,让大家看看编写一个聊天对话是多么简单。接下来将进入更为底层的使用。

2025-07-07 09:10:40 862

flink-1.20.0下载

flink-1.20.0下载

2025-02-25

docker Windows安装软件

docker Windows安装软件

2025-02-21

VMware-workstation-full-15.5.6安装包

vmware:VMware-workstation-full-15.5.6安装包

2025-02-21

Mysql的可视化客户端工具

Mysql的可视化客户端工具

2024-11-28

ZooInspector.zip

ZooInspector是一款可以连接zookeeper的可视化客户端

2024-11-07

robo3t-1.4.4 Windows版本

robo3t是一款mongo的客户端可视化工具,1.4.4版本可以连接低版本的mongodb

2024-11-07

mongo-shake-v2.6.5 Linux版本

mongo-shake是一款同步mongo的bingo日志,可以作为从库或者读取实时更新的工具

2024-11-07

influxdb2-2.7.10-windows

influxdb2-2.7.10-windows,是一个Windows版本可以运行的的influxdb。

2024-11-07

influxStuido-0.2.0.0-Release

influxStuido一款可视化查询influxDB的客户端工具

2024-11-07

2023年AIGC发展研究报告1.0版-清华大学

2023年AIGC发展研究报告,清华大学

2023-08-01

netty-4.1.16.Final 源码 allinone

netty-4.1.16最终版本,包括jar、源码、doc等,其中jar有allinone和分开的功能jar。

2017-10-10

JACOB_1.9(java导成word工具jar包)

JACOB 1.9版本 用于java导成word文档的工具jar包

2012-11-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除