人脸识别问题中x是图像,当然图像在计算机中的存储方式是数字矩阵对应图像的像素点阵
每个像素点是用数值来表示RGB或者黑白灰,所以不同的图像所对应的数字矩阵是不同的
在数值分布上会呈现出一定的特征,比如人脸和五官,不管出现在图像中的哪个位置,对应的数值都会有一定的规律。
经过上面步骤的处理,人脸识别的相关问题就都转换成为基于数值矩阵的分类或者回归问题,标签值如果是男女老少这样的类别,那是分类问题,标签值如果是特征点或者定位框,那就是回归问题。
x是各种人脸的照片,包括正面侧面的各种人像照呢,y是眼耳鼻喉这些关键点的坐标,我们的目标是用这些数据训练模型,告诉模型当给定图像是这样的数值矩阵型,对应的人脸特征点在这些位置,我们希望训练好的模型,对于未知的图像可以做出正确的特征点预测。
-------------------------------------------
人脸识别技术,就是人类试图引导人工智能去模仿这种能力,利用节点将人脸变成可见的线条,例如眼窝深度、眼睛间距、鼻头宽度等等。
人脸识别的过程中有4个关键的步骤:
- 人脸检测
- 人脸对齐