插入排序基本思想:将待排序列视为有序和无序两部分,首先将第1个记录视为有序,从第2个记录arr[1]开始,依次与前面的记录的关键字进行比较,若arr[1]小于arr[0],则交换两者,此时待排序列的第1、2个记录组成有序部分,将第3个记录arr[2]依次与arr[1]、arr[0]进行比较,若arr[2]较小,则依次和前面的值进行交换,依次类推...
插入排序的C++实现:
SortTestHelper.h头文件(其中包含用于排序算法的各种辅助函数)
#include <iostream>
#include <cstdlib>
#include <ctime> //clock()、CLOCKS_PER_SEC
#include <cassert> //包含函数assert()
using namespace std;
namespace SortTestHelper
{
//辅助函数 - 随机产生一个数组
int* generateRandomArray(int n, int RangeL, int RangeR) //返回数组首地址
{
//判断RangeL是否<=RangeR
assert(RangeL <= RangeR); //参数为表达式,表达式为真时返回true,否则打印错误信息
int *arr = new int[n];
srand(time(0));
for(int i = 0; i < n ; i++)
{
arr[i] = rand() % (RangeR - RangeL + 1) + RangeL; //使得产生的随机数在RangeL和RangeR之间
}
return arr;
}
//辅助函数 - 产生一个近乎有序的随机数组
int* generateNearlyOrderedArray(int n, int swapTime)
{
int *arr = new int[n];
for(int i = 0; i < n; i++)
{
arr[i] = i; //先生成一个完全有序的数组
}
//然后交换几组元素,使之变成无序但近乎有序的数组
srand(time(0));
for(int j = 0; j < swapTime; j++)
{
//随机生成一个x位置和y位置
int posx = rand() % n;
int posy = rand() % n;
//交换x和y处的元素
swap(arr[posx], arr[posy]);
}
return arr;
}
//辅助函数 - 打印数组
template<typename T>
void printArray(T arr[], int n)
{
for(int i = 0; i < n; i++)
{
cout << arr[i] << " ";
}
cout << endl;
}
//辅助函数 - 判断数组是否有序(升序)
template<typename T>
bool isSorted(T arr[], int n)
{
for(int i = 0; i < n - 1; i++)
{
if(arr[i] > arr[i + 1])
{
return false;
}
}
return true;
}
//辅助函数 - 测试算法的时间
template<typename T>
void testSort(string sortname, void(*sort)(T[], int), T arr[], int n) //arr[]和n是函数指针需要的参数
{
clock_t starttime = clock();
sort(arr, n); //调用函数sort()
clock_t endtime = clock();
//判断排序是否成功
assert(isSorted(arr, n)); //若是数组无序,则assert会自动调用abort()退出程序,不会执行下面的语句
cout << sortname << " needs " << double(endtime - starttime) / CLOCKS_PER_SEC << "s." << endl;
}
//辅助函数 - 拷贝数组
int* copyIntArray(int a[], int n)
{
int *arr = new int[n];
//使用C++函数copy()
copy(a, a + n, arr);
return arr;
}
}
main.cpp文件
#include <iostream>
#include <algorithm>
#include "SortTestHelper.h"
template<typename T>
void insertionSort(T arr[], int n)
{
for(int i = 1; i < n; i++)
{
for(int j = i; j > 0 && arr[j] < arr[j - 1]; j--)
{
swap(arr[j], arr[j - 1]); //每次交换需要3次赋值操作
}
}
}
int main()
{
int n = 10000;
int *arr = SortTestHelper::generateRandomArray(n, 0, n);
SortTestHelper::testSort("insertionSort", insertionSort, arr, n);
delete[] arr;
return 0;
}
接下来对上述插入算法进行分析:
插入算法中有提前终止循环的条件for(int j = i; j > 0 && arr[j] < arr[j - 1]; j--),这本应该使得插入排序比选择排序时间性能更好,但是可以比较该插入算法和简单选择排序,可以测试得到该插入算法反而耗时更长。
从算法代码可以看出,比较耗时的操作在于每向前找到一个大于当前值的位置,都需要进行一次交换,而每一次swap都需要经过3次交换赋值,因此和简单选择排序相比,这种算法反而耗时更长,接下来对该插入算法进行优化。
优化的插入算法:即先将待插入数据拷贝一份副本,存放在T e中,然后寻找合适的插入位置时仅进行移动而不进行交换,记录下最终找到的合适位置下标j,最后将e插入到arr[j]即可。即用赋值取代交换可以减少耗费的时间。
优化的插入算法如下:
template<typename T>
void insertionSort(T arr[], int n)
{
for(int i = 1; i < n; i++)
{
T e = arr[i];
//在arr[0...i]寻找插入位置j
int j;
for(j = i; j > 0 && arr[j - 1] > e; j--)
{
arr[j] = arr[j - 1];
}
//将e插入到arr[j]
arr[j] = e;
}
}
测试优化后的插入排序算法和选择排序算法,可以发现,优化后的插入算法时间性能更好。