针对重复键值的3路快速排序算法

本文介绍了针对大量重复键值的优化版3路快速排序算法,通过减少对等于键值部分的递归,提高排序效率。C++实现展示了3种快速排序(包括2路和3路)在不同情况下的性能比较,特别是在有重复键值的序列中,3路快速排序表现出更好的时间性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  针对待排序列中农存在大量重复键值的情况,上一节讲了一种对快排算法的优化,代码如下:

template<typename T>
int __patition(T arr[], int l, int r)
{
    swap(arr[l], arr[rand() % (r - l + 1) + l]);
    T v = arr[l];
    int i = l + 1, j = r;
    while(true)
    {
        while(i <= r && arr[i] < v)
        {
            i++;
        }
        while(j >= l + 1 && arr[j] > v)
        {
            j--;
        }
        if(i > j)
        {
            break;
        }
        swap(arr[i++],arr[j--]);
    }
    swap(arr[j], arr[l]);
    return j;
}

template<typename T>
void __quickSort(T arr[], int l, int r)
{
    if(l >= r)
    {
        return;
    }
    else
    {
        int p = __patition(arr, l, r);
        __quickSort(arr, l, p - 1);
        __quickSort(arr, p + 1, r);
    }
}

template<typename T>
void quickSort(T arr[], int n)
{
    srand(time(0));
    __quickSort(arr, 0, n - 1);
}
  实际上还存在一种针对重复键值的经典优化快排算法,称为3路快速排序算法,这种排序算法相比上一节的优化效率更高,3路快排将待排序列分为3部分:<v、==v、>v,则进行递归时,对==v的部分就不用考虑,只需考虑对<v和>v部分进行递归排序,如图所示:


   若 i 指向的元素<v,则交换arr[lt+1]和arr[i],然后i++,若 i 指向的元素==v,则直接i++,若 i 指向的元素>v,则交换arr[i]和arr[gt-1],此时不需要维护 i ,只需要将gt--即可,整个过程就是这样的,最后的结果如下图所示:


  最后将arr[l]和arr[lt交换]。


  接下来递归只针对<v和>v的部分进行递归即可,可以看出,对于含有很多重复键值的序列来说,可以省去对==v部分进行下一层递归操作,这将节省很多时间。

  3路快速排序算法的C++实现如下,我们将之前讲的2种快排和3路快排进行时间性能上的比较:

SortTestHelper.h文件(包含辅助函数)

#include <iostream>
#include <cstdlib>
#include <ctime>  //clock()、CLOCKS_PER_SEC
#include <cassert>  //包含函数assert()

using namespace std;

namespace SortTestHelper
{
    //辅助函数 - 随机产生一个数组
    int* generateRandomArray(int n, int RangeL, int RangeR)  //返回数组首地址
    {
        //判断RangeL是否<=RangeR
        assert(RangeL <= RangeR);  //参数为表达式,表达式为真时返回true,否则打印错误信息

        int *arr = new int[n];
        srand(time(0));
        for(int i = 0; i < n ; i++)
        {
            arr[i] = rand() % (RangeR - RangeL + 1) + RangeL;  //使得产生的随机数在RangeL和RangeR之间
        }
        return arr;
    }

    //辅助函数 - 产生一个近乎有序的随机数组
    int* generateNearlyOrderedArray(int n, int swapTime)
    {
        int *arr = new int[n];
        for(int i = 0; i < n; i++)
        {
            arr[i] = i;  //先生成一个完全有序的数组
        }
        //然后交换几组元素,使之变成无序但近乎有序的数组
        srand(time(0));
        for(int j = 0; j < swapTime; j++)
        {
            //随机生成一个x位置和y位置
            int posx = rand() % n;
            int posy = rand() % n;
            //交换x和y处的元素
            swap(arr[posx], arr[posy]);
        }
        return arr;
    }

    //辅助数组 - 产生一个完全有序数组
    int* generateTotallyOrderedArray(int n)
    {
        int *arr = new int[n];
        for(int i = 0; i < n; i++)
        {
            arr[i] = i;
        }
        return arr;
    }

    //辅助函数 - 打印数组
    template<typename T>
    void printArray(T arr[], int n)
    {
        for(int i = 0; i < n; i++)
        {
            cout << arr[i] << " ";
        }
        cout << endl;
    }

    //辅助函数 - 判断数组是否有序(升序)
    template<typename T>
    bool isSorted(T arr[], int n)
    {
        for(int i = 0; i < n - 1; i++)
        {
            if(arr[i] > arr[i + 1])
            {
                return false;
            }
        }
        return true;
    }

    //辅助函数 - 测试算法的时间
    template<typename T>
    void testSort(string sortname, void(*sort)(T[], int), T arr[], int n)  //arr[]和n是函数指针需要的参数
    {
        clock_t starttime = clock();
        sort(arr, n);  //调用函数sort()
        clock_t endtime = clock();

        //判断排序是否成功
        assert(isSorted(arr, n));  //若是数组无序,则assert会自动调用abort()退出程序,不会执行下面的语句

        cout << sortname << " needs " << double(endtime - starttime) / CLOCKS_PER_SEC << "s." << endl;
    }

    //辅助函数 - 拷贝数组
    int* copyIntArray(int a[], int n)
    {
        int *arr = new int[n];
        //使用C++函数copy()
        copy(a, a + n, arr);
        return arr;
    }
}


main.cpp文件(包含3中快排算法)

#include <iostream>
#include <ctime>
#include <cstdlib>
#include "SortTestHelper.h"

using namespace std;

//对arr[l...r]进行插入排序
template<typename T>
void insertionSort(T arr[], int l, int r)
{
    for(int i = l + 1; i <= r; i++)
    {
        T e = arr[i];
        int j;
        for(j = i; j > l && arr[j - 1] > e; j--)
        {
            arr[j] = arr[j - 1];
        }
        arr[j] = e;
    }
}

//3路快速排序
template<typename T>
void __quickSort3Ways(T arr[], int l, int r)
{
    if(r - l <= 15)  //序列中仅有16个元素时
    {
        insertionSort(arr, l, r);
        return;
    }
    else
    {
        //因为需要返回lt和gt两个下标,所以这里不适用函数patition来进行划分
        //patition操作
        swap(arr[l], arr[rand() % (r - l + 1) + l]);
        T v = arr[l];
        int lt = l;  //保证<v的部分arr[l+1...lt]初始为空
        int gt = r + 1;  //保证>v的部分arr[gt...r]初始为空
        int i = l + 1; //保证==v的部分arr[lt+1...i)初始为空
        while(i < gt)
        {
            if(arr[i] < v)
            {
                swap(arr[lt + 1], arr[i]);
                i++;
                lt++;
            }
            else if(arr[i] == v)
            {
                i++;
            }
            else
            {
                swap(arr[i], arr[gt - 1]);
                gt--;
            }
        }
        //此时i == gt
        swap(arr[l], arr[lt]);

        //对arr[l...lt-1]进行递归
        __quickSort3Ways(arr, l, lt - 1);
        //对arr[gt...r]进行递归
        __quickSort3Ways(arr, gt, r);
    }
}

template<typename T>
void quickSort3Ways(T arr[], int n)
{
    srand(time(0));
    __quickSort3Ways(arr, 0, n - 1);
}

//快排2
template<typename T>
int __patition2(T arr[], int l, int r)
{
    swap(arr[l], arr[rand() % (r - l + 1) + l]);
    T v = arr[l];
    int i = l + 1, j = r;
    while(true)
    {
        while(i <= r && arr[i] < v)
        {
            i++;
        }
        while(j >= l + 1 && arr[j] > v)
        {
            j--;
        }
        if(i > j)
        {
            break;
        }
        swap(arr[i++],arr[j--]);
    }
    swap(arr[j], arr[l]);
    return j;
}

template<typename T>
void __quickSort2(T arr[], int l, int r)
{
    //优化底层递归
    if(r - l <= 15)  //即只有16个元素时
    {
        //采用插入排序
        insertionSort(arr, l, r);
        return;
    }
    else
    {
        int p = __patition2(arr, l, r);
        __quickSort2(arr, l, p - 1);
        __quickSort2(arr, p + 1, r);
    }
}

template<typename T>
void quickSort2(T arr[], int n)
{
    srand(time(0));
    __quickSort2(arr, 0, n - 1);
}

//快排
template<typename T>
int __patition(T arr[], int l, int r)
{
    swap(arr[l], arr[rand() % (r - l + 1) + l]);
    T v = arr[l];

    int j = l;
    for(int i = l + 1; i <= r; i++)
    {
        if(arr[i] < v)
        {
            swap(arr[j + 1], arr[i]);
            j++;
        }
    }
    swap(arr[l], arr[j]);
    return j;
}

template<typename T>
void __quickSort(T arr[], int l, int r)  //对arr[l...r]进行快速排序
{
    //优化底层递归
    if(r - l <= 15)  //即只有16个元素时
    {
        //采用插入排序
        insertionSort(arr, l, r);
        return;
    }
    else
    {
        int p = __patition(arr, l, r);  //__patition()函数将arr[l...r]分为两部分,该函数返回一个索引值
        __quickSort(arr, l, p - 1);
        __quickSort(arr, p + 1, r);
    }
}

template<typename T>
void quickSort(T arr[], int n)
{
    srand(time(0));  //设置时间种子
    __quickSort(arr, 0, n - 1);
}

int main()
{
    int n = 700000;

    //测试 - 随机序列
    int *arr = SortTestHelper::generateRandomArray(n, 0, n);
    int *arr2 = SortTestHelper::copyIntArray(arr, n);
    int *arr3 = SortTestHelper::copyIntArray(arr, n);
    SortTestHelper::testSort("quickSort", quickSort, arr, n);
    SortTestHelper::testSort("quickSort2", quickSort2, arr2, n);
    SortTestHelper::testSort("quickSort3Ways", quickSort3Ways, arr3, n);
    cout << endl;
    delete[] arr;
    delete[] arr2;
    delete[] arr3;

    //测试 - 近乎有序序列
    int swaptime = 100;
    int *a = SortTestHelper::generateNearlyOrderedArray(n, swaptime);
    int *a2 = SortTestHelper::copyIntArray(a, n);
    int *a3 = SortTestHelper::copyIntArray(a, n);
    SortTestHelper::testSort("quickSort", quickSort, a, n);
    SortTestHelper::testSort("quickSort2", quickSort2, a2, n);
    SortTestHelper::testSort("quickSort3Ways", quickSort3Ways, a3, n);
    cout << endl;
    delete[] a;
    delete[] a2;
    delete[] a3;

    //测试 - 重复键值序列
    int *b = SortTestHelper::generateRandomArray(n, 0, 10);
    int *b2 = SortTestHelper::copyIntArray(b, n);
    int *b3 = SortTestHelper::copyIntArray(b, n);
    SortTestHelper::testSort("quickSort", quickSort, b, n);
    SortTestHelper::testSort("quickSort2", quickSort2, b2, n);
    SortTestHelper::testSort("quickSort3Ways", quickSort3Ways, b3, n);
    cout << endl;
    delete[] b;
    delete[] b2;
    delete[] b3;

    return 0;
}

  测试结果如下:



  可以看出,对于随机待排序列和近乎有序序列,3种快排算法的时间性能差不多,而且都符合理想性能;在含有大量重复键值的序列中,3路快速排序算法的时间性能会更好。

  可以根据实际情况选取三种快排算法中的一种进行应用。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值