针对待排序列中农存在大量重复键值的情况,上一节讲了一种对快排算法的优化,代码如下:
template<typename T>
int __patition(T arr[], int l, int r)
{
swap(arr[l], arr[rand() % (r - l + 1) + l]);
T v = arr[l];
int i = l + 1, j = r;
while(true)
{
while(i <= r && arr[i] < v)
{
i++;
}
while(j >= l + 1 && arr[j] > v)
{
j--;
}
if(i > j)
{
break;
}
swap(arr[i++],arr[j--]);
}
swap(arr[j], arr[l]);
return j;
}
template<typename T>
void __quickSort(T arr[], int l, int r)
{
if(l >= r)
{
return;
}
else
{
int p = __patition(arr, l, r);
__quickSort(arr, l, p - 1);
__quickSort(arr, p + 1, r);
}
}
template<typename T>
void quickSort(T arr[], int n)
{
srand(time(0));
__quickSort(arr, 0, n - 1);
}
实际上还存在一种针对重复键值的经典优化快排算法,称为3路快速排序算法,这种排序算法相比上一节的优化效率更高,3路快排将待排序列分为3部分:<v、==v、>v,则进行递归时,对==v的部分就不用考虑,只需考虑对<v和>v部分进行递归排序,如图所示:
若 i 指向的元素<v,则交换arr[lt+1]和arr[i],然后i++,若 i 指向的元素==v,则直接i++,若 i 指向的元素>v,则交换arr[i]和arr[gt-1],此时不需要维护 i ,只需要将gt--即可,整个过程就是这样的,最后的结果如下图所示:
最后将arr[l]和arr[lt交换]。
接下来递归只针对<v和>v的部分进行递归即可,可以看出,对于含有很多重复键值的序列来说,可以省去对==v部分进行下一层递归操作,这将节省很多时间。
3路快速排序算法的C++实现如下,我们将之前讲的2种快排和3路快排进行时间性能上的比较:
SortTestHelper.h文件(包含辅助函数)
#include <iostream>
#include <cstdlib>
#include <ctime> //clock()、CLOCKS_PER_SEC
#include <cassert> //包含函数assert()
using namespace std;
namespace SortTestHelper
{
//辅助函数 - 随机产生一个数组
int* generateRandomArray(int n, int RangeL, int RangeR) //返回数组首地址
{
//判断RangeL是否<=RangeR
assert(RangeL <= RangeR); //参数为表达式,表达式为真时返回true,否则打印错误信息
int *arr = new int[n];
srand(time(0));
for(int i = 0; i < n ; i++)
{
arr[i] = rand() % (RangeR - RangeL + 1) + RangeL; //使得产生的随机数在RangeL和RangeR之间
}
return arr;
}
//辅助函数 - 产生一个近乎有序的随机数组
int* generateNearlyOrderedArray(int n, int swapTime)
{
int *arr = new int[n];
for(int i = 0; i < n; i++)
{
arr[i] = i; //先生成一个完全有序的数组
}
//然后交换几组元素,使之变成无序但近乎有序的数组
srand(time(0));
for(int j = 0; j < swapTime; j++)
{
//随机生成一个x位置和y位置
int posx = rand() % n;
int posy = rand() % n;
//交换x和y处的元素
swap(arr[posx], arr[posy]);
}
return arr;
}
//辅助数组 - 产生一个完全有序数组
int* generateTotallyOrderedArray(int n)
{
int *arr = new int[n];
for(int i = 0; i < n; i++)
{
arr[i] = i;
}
return arr;
}
//辅助函数 - 打印数组
template<typename T>
void printArray(T arr[], int n)
{
for(int i = 0; i < n; i++)
{
cout << arr[i] << " ";
}
cout << endl;
}
//辅助函数 - 判断数组是否有序(升序)
template<typename T>
bool isSorted(T arr[], int n)
{
for(int i = 0; i < n - 1; i++)
{
if(arr[i] > arr[i + 1])
{
return false;
}
}
return true;
}
//辅助函数 - 测试算法的时间
template<typename T>
void testSort(string sortname, void(*sort)(T[], int), T arr[], int n) //arr[]和n是函数指针需要的参数
{
clock_t starttime = clock();
sort(arr, n); //调用函数sort()
clock_t endtime = clock();
//判断排序是否成功
assert(isSorted(arr, n)); //若是数组无序,则assert会自动调用abort()退出程序,不会执行下面的语句
cout << sortname << " needs " << double(endtime - starttime) / CLOCKS_PER_SEC << "s." << endl;
}
//辅助函数 - 拷贝数组
int* copyIntArray(int a[], int n)
{
int *arr = new int[n];
//使用C++函数copy()
copy(a, a + n, arr);
return arr;
}
}
#include <iostream>
#include <ctime>
#include <cstdlib>
#include "SortTestHelper.h"
using namespace std;
//对arr[l...r]进行插入排序
template<typename T>
void insertionSort(T arr[], int l, int r)
{
for(int i = l + 1; i <= r; i++)
{
T e = arr[i];
int j;
for(j = i; j > l && arr[j - 1] > e; j--)
{
arr[j] = arr[j - 1];
}
arr[j] = e;
}
}
//3路快速排序
template<typename T>
void __quickSort3Ways(T arr[], int l, int r)
{
if(r - l <= 15) //序列中仅有16个元素时
{
insertionSort(arr, l, r);
return;
}
else
{
//因为需要返回lt和gt两个下标,所以这里不适用函数patition来进行划分
//patition操作
swap(arr[l], arr[rand() % (r - l + 1) + l]);
T v = arr[l];
int lt = l; //保证<v的部分arr[l+1...lt]初始为空
int gt = r + 1; //保证>v的部分arr[gt...r]初始为空
int i = l + 1; //保证==v的部分arr[lt+1...i)初始为空
while(i < gt)
{
if(arr[i] < v)
{
swap(arr[lt + 1], arr[i]);
i++;
lt++;
}
else if(arr[i] == v)
{
i++;
}
else
{
swap(arr[i], arr[gt - 1]);
gt--;
}
}
//此时i == gt
swap(arr[l], arr[lt]);
//对arr[l...lt-1]进行递归
__quickSort3Ways(arr, l, lt - 1);
//对arr[gt...r]进行递归
__quickSort3Ways(arr, gt, r);
}
}
template<typename T>
void quickSort3Ways(T arr[], int n)
{
srand(time(0));
__quickSort3Ways(arr, 0, n - 1);
}
//快排2
template<typename T>
int __patition2(T arr[], int l, int r)
{
swap(arr[l], arr[rand() % (r - l + 1) + l]);
T v = arr[l];
int i = l + 1, j = r;
while(true)
{
while(i <= r && arr[i] < v)
{
i++;
}
while(j >= l + 1 && arr[j] > v)
{
j--;
}
if(i > j)
{
break;
}
swap(arr[i++],arr[j--]);
}
swap(arr[j], arr[l]);
return j;
}
template<typename T>
void __quickSort2(T arr[], int l, int r)
{
//优化底层递归
if(r - l <= 15) //即只有16个元素时
{
//采用插入排序
insertionSort(arr, l, r);
return;
}
else
{
int p = __patition2(arr, l, r);
__quickSort2(arr, l, p - 1);
__quickSort2(arr, p + 1, r);
}
}
template<typename T>
void quickSort2(T arr[], int n)
{
srand(time(0));
__quickSort2(arr, 0, n - 1);
}
//快排
template<typename T>
int __patition(T arr[], int l, int r)
{
swap(arr[l], arr[rand() % (r - l + 1) + l]);
T v = arr[l];
int j = l;
for(int i = l + 1; i <= r; i++)
{
if(arr[i] < v)
{
swap(arr[j + 1], arr[i]);
j++;
}
}
swap(arr[l], arr[j]);
return j;
}
template<typename T>
void __quickSort(T arr[], int l, int r) //对arr[l...r]进行快速排序
{
//优化底层递归
if(r - l <= 15) //即只有16个元素时
{
//采用插入排序
insertionSort(arr, l, r);
return;
}
else
{
int p = __patition(arr, l, r); //__patition()函数将arr[l...r]分为两部分,该函数返回一个索引值
__quickSort(arr, l, p - 1);
__quickSort(arr, p + 1, r);
}
}
template<typename T>
void quickSort(T arr[], int n)
{
srand(time(0)); //设置时间种子
__quickSort(arr, 0, n - 1);
}
int main()
{
int n = 700000;
//测试 - 随机序列
int *arr = SortTestHelper::generateRandomArray(n, 0, n);
int *arr2 = SortTestHelper::copyIntArray(arr, n);
int *arr3 = SortTestHelper::copyIntArray(arr, n);
SortTestHelper::testSort("quickSort", quickSort, arr, n);
SortTestHelper::testSort("quickSort2", quickSort2, arr2, n);
SortTestHelper::testSort("quickSort3Ways", quickSort3Ways, arr3, n);
cout << endl;
delete[] arr;
delete[] arr2;
delete[] arr3;
//测试 - 近乎有序序列
int swaptime = 100;
int *a = SortTestHelper::generateNearlyOrderedArray(n, swaptime);
int *a2 = SortTestHelper::copyIntArray(a, n);
int *a3 = SortTestHelper::copyIntArray(a, n);
SortTestHelper::testSort("quickSort", quickSort, a, n);
SortTestHelper::testSort("quickSort2", quickSort2, a2, n);
SortTestHelper::testSort("quickSort3Ways", quickSort3Ways, a3, n);
cout << endl;
delete[] a;
delete[] a2;
delete[] a3;
//测试 - 重复键值序列
int *b = SortTestHelper::generateRandomArray(n, 0, 10);
int *b2 = SortTestHelper::copyIntArray(b, n);
int *b3 = SortTestHelper::copyIntArray(b, n);
SortTestHelper::testSort("quickSort", quickSort, b, n);
SortTestHelper::testSort("quickSort2", quickSort2, b2, n);
SortTestHelper::testSort("quickSort3Ways", quickSort3Ways, b3, n);
cout << endl;
delete[] b;
delete[] b2;
delete[] b3;
return 0;
}
测试结果如下:
可以看出,对于随机待排序列和近乎有序序列,3种快排算法的时间性能差不多,而且都符合理想性能;在含有大量重复键值的序列中,3路快速排序算法的时间性能会更好。
可以根据实际情况选取三种快排算法中的一种进行应用。