jStat中文参考手册
本文是Javascript统计学库jStat的中文参考手册。jStat是用Javascript编写的统计学库,它可以让你进行高级的统计操作而不需要专门的统计语言(如MATLAB或R)。
WIN32API串口通信编程实例教程
WORDBOOKCREATOR制作的电子书。详细的讲解串口通信编程的方法。所附代码均经VC6编译通过。
OpenCV 3.0 Computer Vision with Java源码
OpenCV 3.0 Computer Vision with Java一书的源代码
用VBS自动发送电子邮件源码实例
通过VBS自动发送电子邮件的源码实例,用不用SMTP协议,简使快捷。
PPTBook1.0
用PPT制作电子书,可以指定授权电脑阅读.
WordBook1.1电子书
一种基于WORD文档的电子书。WordBook1.1以一个文档为一个电子书,WordBook1.2将多个文档合并为一个电子书。WordBook正式版可以加密文档。正式版请联系
[email protected]。
PPT2BMP(PowerPoint转BMP图片)软件
将PPT转换为BMP格式图片的软件。DEBUG版。转换后的图片在原PPT所在的目录下。转换速度为每秒1张。
笔记本电池解锁
笔记本电池解锁,解锁过程,所需工具,图解。
键盘记录学习软件供参考
用于学习键盘记录的演示实例软件.仅学习参考.
复制网页内资源的软件
一个可以复制网页内资源的软件。只需按软件内的说明使用即可。
串口实时温度采集系统
通过串口实时采集温度数据并绘制曲线的软件.
WordBook1.2
将多个WORD文档制成电子书,对WORD文档进加密,指定授权电脑阅读。
PPTBook1.2
将多个PPT制作成电子书,可指定授权电脑阅读。
一个简单超级抗毒型浏览器
一个不被病毒干扰的浏览器,小巧,好用,安全无毒,还可随时下载资料。
单因子实验方差分析结果解释及Python实现
内容概要:本文基于《实验设计与分析》第6版第3章单因子实验方差分析的3.5节,提供了Python解决方案并解释了方差分析结果的实际应用。文章重点介绍了Tukey检验和Fisher最小显著性差异(LSD)法这两种常用的均值配对比较方法。通过具体实例展示了如何使用Tukey检验判断各处理均值间的显著性差异,并详细给出了Python代码实现。此外,还探讨了在方差分析中F检验显著但配对比较无显著差异的情况及其原因。
适合人群:具备Python基础,有一定统计学知识的研究人员或数据分析人员。
使用场景及目标:①理解单因子实验中方差分析结果的解释;②掌握Tukey检验和Fisher LSD法的具体应用和Python实现;③能够通过代码实现对实验数据的统计分析,并解读分析结果。
阅读建议:本文假定读者已有Python基础,建议读者先熟悉Python编程语言及统计学基础知识。在阅读过程中,结合提供的Python代码和具体实例进行实践操作,有助于更好地理解和掌握方差分析结果的解释方法。
基于Python的配对t检验实现
内容概要:本文主要介绍如何使用Python进行配对t检验,以验证两组配对样本的均值是否存在显著差异。文章以实验设计与分析(第6版,Montgomery著傅珏生译)第2章2.5节为基础,详细解释了配对t检验的原理和应用场景。文中通过一个具体的例子——比较两根不同压头对金属试件硬度测量结果的差异,展示了配对t检验的具体步骤。包括数据准备、计算配对差的样本均值和标准差、构造检验统计量、确定临界值以及最终的假设检验决策。文章还提供了完整的Python代码实现,包括使用numpy和scipy.stats库进行数据处理和统计检验,并与书中提供的结果进行了对比。
适合人群:具备Python基础并有一定统计学知识的科研人员或数据分析从业者。
使用场景及目标:①需要对两组配对样本进行均值差异性分析的研究项目;②希望通过实际案例深入理解配对t检验的原理和应用;③学习如何利用Python进行统计分析,特别是掌握scipy.stats库的使用。
阅读建议:本文假设读者已经掌握了Python编程基础和基本的统计学概念。因此,在阅读本文之前,建议先熟悉Python语言的基本语法和常用库(如numpy、scipy),以及统计学中的假设检验理论。在学习过程中,可以通过运行提供的代码片段加深对配对t检验的理解,并尝试修改参数或使用自己的数据集进行练习。
Python绘制基础统计图
内容概要:本文基于《实验设计与分析》一书的第2章内容,详细介绍了如何使用Python绘制基础统计图,包括点图、直方图、盒图和正态分布图。文章以硅酸盐水泥砂浆配方实验为例,展示了两种不同配方(改良和未改良)的粘结抗拉强度数据,并通过点图直观呈现了两者的差异。此外,还通过直方图和盒图进一步展示了数据的分布特征,如中心趋势和分散程度。最后,文章介绍了概率分布的概念,并通过正态分布图解释了连续型随机变量的概率密度函数。
适合人群:具备一定Python编程基础并希望学习如何使用Python进行数据可视化和统计分析的科研人员、工程师和学生。
使用场景及目标:①通过点图、直方图和盒图,快速了解小样本数据的中心趋势和分散程度;②利用正态分布图理解连续型随机变量的概率分布特性;③掌握使用Python绘制统计图表的基本方法,以便更好地进行数据分析和实验结果展示。
阅读建议:读者应结合实际数据集进行练习,熟悉Python中常用的绘图库(如Matplotlib和Seaborn),并通过调整代码参数深入理解图表的生成过程。同时,建议读者关注统计学基础知识,以更好地理解图表背后的意义。
单因子实验方差分析模型适合性检验
内容概要:本文基于《实验设计与分析》(第6版)第3章单因子实验方差分析第3.4节的内容,提供了方差分析模型适合性检验的Python解决方案。文章主要探讨了残差检验的重要性及其图形分析方法,包括正态性假设检验、依时间序列的残差图、残差与拟合值的关系图,以及残差与其他变量的关系图。通过这些方法,可以检测模型的适合性和基本假设的符合情况。文中还介绍了处理异常值的方法、方差相等性的统计检验(如Bartlett检验和Levene检验),并强调了方差稳定化变换的应用。;
适合人群:具备Python基础并有一定统计学知识的科研人员、数据分析师及研究生。;
使用场景及目标:①学习如何通过残差分析验证方差分析模型的假设;②掌握正态性假设、方差齐性假设的检验方法;③理解如何处理异常值及不满足假设的情况;④学会使用Python实现方差分析模型的适合性检验。;
其他说明:本文假设读者已具备Python编程基础,并提供了一些Python代码示例用于实践操作。此外,文中引用了具体的数据集和实例,帮助读者更好地理解和应用所学知识。建议读者结合实际数据进行练习,并参考相关文献深入了解方差分析的理论背景。
单因子方差分析Python实现
内容概要:本文主要介绍单因子方差分析的Python实现及其应用,基于Montgomery著《实验设计与分析》第6版相关内容。文章通过一个具体的案例——研究RF功率设置对蚀刻率的影响,详细讲解了如何利用Python进行数据分析和统计检验。首先,介绍了实验背景和目的,即通过4个不同RF功率水平(160W、180W、200W、220W)下的蚀刻率测试,探讨RF功率与蚀刻率之间的关系。接着,阐述了数据收集方式(每个功率水平下测试5个样本)及随机化的重要性,以确保实验结果的有效性和可靠性。然后,展示了如何使用Python读取数据、绘制箱线图和散点图进行初步的数据可视化分析,观察到蚀刻率随功率增加而上升的趋势。最后,重点讲解了单因子方差分析的具体步骤,包括构建统计模型、计算平方和、求解F值和P值,最终得出RF功率设置对平均蚀刻率有显著影响的结论。;
适合人群:具备一定Python编程基础,对统计学特别是方差分析感兴趣的科研人员或工程技术人员。;
使用场景及目标:①学习如何运用Python实现单因子方差分析;②理解RF功率设置与蚀刻率之间的关系及其背后的统计原理;③掌握如何通过方差分析评估不同处理条件下的均值差异,为实际工程项目中的参数优化提供依据。;
阅读建议:由于本文侧重于Python实现而非理论推导,建议读者提前熟悉单因子方差分析的基本概念。在阅读过程中,应重点关注代码实现细节以及实验设计思路,并尝试复现文中提供的实例,以便更好地理解和掌握相关知识。
基于Python的双样本t检验
内容概要:本文是《实验设计与分析》第2章简单比较实验2.4节“关于均值差的推断”的Python解决方案,主要探讨了双样本t检验及其在硅酸盐水泥砂浆问题中的应用。文章首先介绍了双样本t检验的统计模型和假设,接着通过具体的硅酸盐水泥砂浆实验数据展示了如何进行t检验,包括计算检验统计量、P值以及解释结果。此外,还提供了Python代码实现,包括样本均值、方差、t统计量的计算,以及使用SciPy库进行t检验的具体操作。最后,讨论了t检验的前提假设检验(如正态性和方差齐性),并介绍了如何通过正态概率图和Minitab输出结果验证这些假设。文章还简要介绍了样本量选择和置信区间的计算。
适合人群:具备一定Python基础,从事数据分析、统计学或相关领域的研究人员和工程师。
使用场景及目标:①帮助读者理解双样本t检验的原理及其在实际问题中的应用;②通过Python代码实现,使读者能够掌握如何使用Python进行统计推断;③帮助读者评估实验数据的正态性和方差齐性,确保t检验的有效性。
其他说明:本文假设读者已具备Python基础,提供了详细的代码示例和解释,方便读者动手实践。同时,文中引用了《实验设计与分析》的相关内容,建议读者结合原书进行更深入的学习。此外,文章还强调了t检验的前提假设及其对结果的影响,提醒读者在实际应用中注意这些假设的合理性。
Windows下两个ESP-IDF版本切换
最近偿试使用ESP32C6,原来安装的ESP-IDF 4.4并不支持这个芯片,于是新安装了ESP-IDF 5.1。后来发现旧的项目用ESP-IDF 5.1并不能容,编译出错。想用回ESP-IDF 4.4。结果发现ESP-IDF 4.4无法使用了。一时间没有找到好的解决办法,以于又重新安装ESP-IDF 4.4。后来想想每次切换都得重新安装,费时。最后发现原来只要修改环境变量
响应面分析之python方法(二)二阶曲面分析
响应曲面法(Response Surface Methodology,RSM)是数学方法和统计方法结合的产物,用于对感兴趣的响应受多个变量影响的问题进行建模和分析,以优化这个响应。
响应面分析之python方法(一)最速上升法
响应曲面法(Response Surface Methodology,RSM)是数学方法和统计方法结合的产物,用于对感兴趣的响应受多个变量影响的问题进行建模和分析,以优化这个响应。
Tensorflow人工神经网络详解
人工神经网络是监督学习算法,它用多个超参数的混合来逼近输入与输出之间的复杂的关系。一些超参数包括:
• 隐茂层的层数
• 隐藏层的神经元数
• 激活函数
• 学习速率
神经网络来自一这样的事实,不是所有的东西都可以被线性/逻辑回归逼近--数据里有潜在的复杂形状不能被复杂的函数逼近。函数越复杂(有可能过拟合),预测越准确。我们从神经网络如何拟合数据到模型开始。
Tensorflow卷积神经网络详解
传统神经网络的一个局限是它对于图像平移变换--即一个猫在右上角的图片与猫在中心的图片是不同对待的。卷积神经网络Convolutional neural networks (CNNs)用于处理这种问题 。
因为CNN可以处理图像的平移,它被认为很有用,而且CNN架构被认为是目标识别/检测最选进的技术。
这一章我们学习如下知识:
•CNN的工作细节
•CNN如何改时传统神经网络的缺点
•卷积和池化对于图像平移的影响
•如何用python实现 CNN
tensorflw循环神经网络详解
尽管CNNs能很好的分类图像,其中平移和旋转能关注到,但是它们不能识别时间模式。根本上,我们可以认为 CNNs只能认别静态模式。Recurrent neural networks (RNNs) 是设计来解决认别时间模式的。
RNNs与CNNs很不同,特别是用来处理序列数据。
TensorFlow基础
介绍TensorFlow的基础。特别地,你将学习如何用TensorFlow进行基础计算。在开始使用 TensorFlow之前,你必须理解它背后的哲学。 这个库基于计算图的概念,如果你不理解计算图是如何工作的,你就不能理解如何使用这个库。我将快速的介绍计算图并告诉你如何用 TensorFlow进行简单的计算。你将明白这个库是如何工作的,并明白如何使用它。
本章的大部分介绍tensors的概念,并讨论tensors在TensorFlow里是如何表示和操作的。这些讨论有必要简单的回顾一下作为张量计算基础的数学概念。 特别地,我们简单的回顾线性代数并说明如何用TensorFlow进行基础的线性代数计算。接着我们讨论声明式和命令式编程风格的不同。不像许多编程语言, TensorFlow大部分是声明式的。调用TensorFlow的计算添加计算描述到 TensorFlow的“计算图”。特别地, TensorFlow代码 “描述”计算但并不进行实际计算。 在TensorFlow v1里要运行计算,我们需要创建 tf.Session对像。虽然TensorFlow v2不用sessions对象,但是也有
TensorFlow编程环境搭建
通常使用Ptyhon和Tensorflow的时候有三个可能的选择:
•使用 Google Colab, 基于云端的Python开发环境。
•在你的笔记本电脑或台式电脑上安装Python 开发环境。
•使用Google提供的Docker镜像,其中已安装TensorFlow。
我们看一下不同的选项以便你选择最合适的一个。
DeepChem教程(基于python)
近年来,生命科学与数据科学开始融合。机器人和自动化的发展使得化学家和生物学家产生巨大的数据。当今的科学家可以在一天内产生比他们在过去二十年产生的数据更多。如此快速产生数据的能力也导致很多新的科学挑战。我们不再处在一个将数据导入到电子表格然后作出很多图的年代。为了从数据集中提取科学知识,我们必须能够识别和提取不明显的关系。
过去几年出现了一种技术,它可以作为识别数据内的模式和关系的强大工具,它就是深度学习,它是彻底改变图像分析,语言翻译,语音识别方法的一类革命性算法。深度学习算法精于识别和探索大数据集中的模式。因为这些原因,深度学习应用已扩展到生命科学中。
Python与数据分析基础源码
虽然商业化的解决方案如Matlab, SPSS, Minitab等提供了强大的工具,但大部分只能在学院中合法的使用。相反,python是完全免费的。另一个原因是python是最漂亮的代编程语言。
对于习惯了使用Excel的用户来说,习惯了选择和粘贴,费心的让python遍历每一个单元格会感觉很慢而且令人沮丧(特别是要检查三遍才能发现打印错误时)。但当你熟悉python之后,你会发现pthon真的很阳光,特别是处理那些需要重复的自动化任务时。
有时候,你会遇到一些大的文件,很可能你无法打开,即便是能打开,手工处理也是很耗时而且很容易出错的。当你要处理的文档很多时,你便很难手工处理了。这种情况,使用python脚本来处理文档可以解决你的问题,因为python脚本可以快速而高效的处理大文件和大数目的文件。另外学习编程可以让那些重复性的数据操作和分析过程自动化。用python脚本处理数据和分析数据可以减少错误的产生。最后,学习编程是非常有趣而且能提高我们的能力的。
有很多的理由可以让你选择python,首先,别的语言的学习曲线很长很陡。其次,python代码易于阅读。其次,python有非常多