CodeForces - 165E Compatible Numbers(状压DP+二进制运算)

本文探讨了一种结合二进制特性和动态规划的算法,用于解决特定的数学问题。通过分析给定的n个数字,算法能够找出每一个数字在这些数中可以与之进行按位与操作结果为0的配对数字。核心思想在于利用二进制的性质,将问题转化为在无限集合中寻找符合条件的元素,并通过动态规划进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://vjudge.net/contest/369905#problem/A
题意:给n个数字,求每一个数字在这n个数里的可以和(&)为0的数
解题思路:
二进制1001对应的和为0的二进数有 0xx0,xx可以为0也可以为1
利用这一点先把每个数在inf内所有和为0的数都标记 出来,然后寻找有没有这n个数中的一个存在
11111111…与任何值异或都得到的是任何值的个数位逆过来

#include<iostream>
#include<cstdio>
using namespace std;
const int inf=(1<<22)-1;
const int len=22;
int m;
int a[1100000];
int dp[inf+10];
int main()
{
	scanf("%d",&m);
	for(int i=1;i<=m;i++)
	{
		scanf("%d",&a[i]);
		dp[inf^a[i]]=a[i];
	}
	for(int i=inf;i>=0;i--)
	{
		if(!dp[i])
		{
			for(int j=0;j<len;j++)
			{
				if(dp[i|(1<<j)])
					dp[i]=dp[i|(1<<j)];
			}
		}
	}
	for(int i=1;i<=m;i++)
	{
		if(dp[a[i]])
		{
			printf("%d ",dp[a[i]]);
		}
		else
			printf("-1 ");
	}
	printf("\n");
	return 0;
}

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Buyi.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值