天池新人实战赛之[离线赛]-初体验-Spark处理

本文介绍了一个使用Apache Spark进行数据提取、转换和加载(ETL)的实际案例,通过具体代码展示了如何从CSV文件中读取商品和用户行为数据,筛选特定行为类型,并最终保存所需数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

这种直接提交购物车的方式不涉及任何算法,后续我会逐渐学习引入机器学习的相关算法,从而更好的对结果进行预测。截止 2019-08-07排名77/11111

package src.main.scala.com.csylh.august.tianchi.dataclearer

import org.apache.spark.sql.{SaveMode, SparkSession}

/**
  * 注意这个
  */
import org.apache.spark.sql.functions.split


/**
  * Description: TODO
  *
  * @Author: 留歌36
  * @Date: 2019-08-01 10:57
  */
object SourceDataETLApp {
  def main(args: Array[String]): Unit = {
    val localMasterURL = "local[2]"
    val clusterMasterRL = ""

    // 面向SparkSession编程
    val spark = SparkSession.builder()
      .master(localMasterURL)
      .appName("SourceDataETLApp")
      .getOrCreate()

    val itemData = "/Users/liuge36/Desktop/fresh_comp_offline/tianchi_fresh_comp_train_item.csv"
    val userData = "/Users/liuge36/Desktop/fresh_comp_offline/tianchi_fresh_comp_train_user.csv"

    /**
      *  共计: 620918
      * |  item_id|item_geohash|item_category|
      * +---------+------------+-------------+
      * |100002303|        null|         3368|
      *
      */
    // 读取商品子集(P)
    val train_item =spark.read.option("header",true).csv(itemData)
    // 查看商品子集数据数量
//    println(train_item.count())
    // 查看前10条商品子集数据
//    train_item.show(10)

    /**
      *
      *  共计: 23 291 027
      * +--------+---------+-------------+------------+-------------+-------------+
      * | user_id|  item_id|behavior_type|user_geohash|item_category|         time|
      * +--------+---------+-------------+------------+-------------+-------------+
      * |10001082|285259775|            1|     97lk14c|         4076|2014-12-08 18|
      */
      // 读取用户行为数据
    val train_user =spark.read.option("header",true).csv(userData)
    // 查看行为数据数量
//    println(train_user.count())
    // 查看前10条行为数据
//    train_user.show(10)
    // 查看日期和行为数据
//    train_user.select("time","behavior_type").show()

    // 筛选出behavior_type==3,即加入购物车数据 659437
    val resultData = train_user.filter("behavior_type == 3")
    // 隐式转换
    import spark.implicits._

    // 筛选出12月18号一天的数据 18487 ,并仅仅获取user_id 和item_id 字段

    val saveData = resultData.withColumn("_tmp", split(resultData.col("time"), " "))
      .select($"_tmp".getItem(0).as("t1"), $"user_id", $"item_id")
      .filter("t1 == '2014-12-18' ")
      .drop("_tmp", "t1")

    // 保存数据
    saveData
      .coalesce(1)
      .write
      .option("header", "true")
      .mode(SaveMode.Overwrite)

      .csv("/Users/liuge36/Desktop/fresh_comp_offline/2")


    spark.stop()


  }

}
大学生参加学科竞有着诸多好处,不仅有助于个人综合素质的提升,还能为未来职业发展奠定良好基础。以下是一些分析: 首先,学科竞是提高专业知识和技能水平的有效途径。通过参与竞,学生不仅能够深入学习相关专业知识,还能够接触到最新的科研成果和技术发展趋势。这有助于拓展学生的学科视野,使其对专业领域有更深刻的理解。在竞过程中,学生通常需要解决实际问题,这锻炼了他们独立思考和解决问题的能力。 其次,学科竞培养了学生的团队合作精神。许多竞项目需要团队协作来完成,这促使学生学会有效地与他人合作、协调分工。在团队合作中,学生们能够学到如何有效沟通、共同制定目标和分工合作,这对于日后进入职场具有重要意义。 此外,学科竞是提高学生综合能力的一种途径。竞项目通常会涉及到理论知识、实际操作和创新思维等多个方面,要求参者具备全面的素质。在竞过程中,学生不仅需要展现自己的专业知识,还需要具备创新意识和解决问题的能力。这种全面的综合能力培养对于未来从事各类职业都具有积极作用。 此外,学科竞可以为学生提供展示自我、树立信心的机会。通过比的舞台,学生有机会展现自己在专业领域的优势,得到他人的认可和赞誉。这对于培养学生的自信心和自我价值感非常重要,有助于他们更加积极主动地投入学习和未来的职业生涯。 最后,学科竞对于个人职业发展具有积极的助推作用。在竞中脱颖而出的学生通常能够引起企业、研究机构等用人单位的关注。获得竞奖项不仅可以作为个人履历的亮点,还可以为进入理想的工作岗位提供有力的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值